Simplify the product A*B*C*D*E*F
A = (√2)
B = (√(2-√2))
C = (√(2-√(2+√2)))
D = (√(2-√(2+√(2+√2))))
E = (√(2-√(2+√(2+√(2+√2)))))
F = (√(2+√(2+√(2+√(2+√2)))))
Let M = sqrt(2 + sqrt(2)).
M^2 = 2 + sqrt(2)
E * F = sqrt(4 - (2 + sqrt(2 + sqrt(2 + sqrt(2))))) =
= sqrt(2 - sqrt(2 + sqrt(2 + sqrt(2)))) = D.
D * E * F = D^2 = 2 - sqrt(2 + sqrt(2 + sqrt(2)))
D * E * F = 2 - sqrt(2 + M)
C = sqrt(2 - M)
C * D * E * F = sqrt(2 + M) * sqrt(2 - M) = sqrt (4 - M^2) =
= sqrt(4 - 2 - sqrt(2)) = sqrt(2 - sqrt(2)) = B
B * C * D * E * F = B^2 = 2 - sqrt(2)
A * B * C * D * E * F = sqrt(2) * [2 - sqrt(2)] = 2* sqrt(2) - 2 =
=2,8284 - 2 = 0,8284...
|
Posted by pcbouhid
on 2005-05-14 23:09:30 |