Steve is in charge of designing a wall-hanging calendar. Each month is allocated a grid of 5 X 7 squares, labeled Sunday thru Saturday across the top. The problem is, Steve hates to put two dates in the same square on the calendar, necessary when the month spans parts of six weeks. Is it possible for Steve to find a year when he never has to put two dates in the same square? What is the most double-date squares he would ever need for a single year?
(In reply to
re: Pesky months by Charlie)
If we count each month that requires a double date as requiring only one double date (doubling up at the beginning of the month if necessary to avoid two double date boxes in a month), the table becomes:
Su31 We28 We31 Sa30* Mo31 Th30 Sa31* Tu31 Fr30 Su31 We30 Fr31* 3
Mo31 Th28 Th31 Su30 Tu31 Fr30 Su31 We31 Sa30* Mo31 Th30 Sa31* 2
Tu31 Fr28 Fr31* Mo30 We31 Sa30* Mo31 Th31 Su30 Tu31 Fr30 Su31 2
We31 Sa28 Sa31* Tu30 Th31 Su30 Tu31 Fr31* Mo30 We31 Sa30* Mo31 3
Th31 Su28 Su31 We30 Fr31* Mo30 We31 Sa31* Tu30 Th31 Su30 Tu31 2
Fr31* Mo28 Mo31 Th30 Sa31* Tu30 Th31 Su31 We30 Fr31* Mo30 We31 3
Sa31* Tu28 Tu31 Fr30 Su31 We30 Fr31* Mo31 Th30 Sa31* Tu30 Th31 3
Su31 We29 Th31 Su30 Tu31 Fr30 Su31 We31 Sa30* Mo31 Th30 Sa31* 2
Mo31 Th29 Fr31* Mo30 We31 Sa30* Mo31 Th31 Su30 Tu31 Fr30 Su31 2
Tu31 Fr29 Sa31* Tu30 Th31 Su30 Tu31 Fr31* Mo30 We31 Sa30* Mo31 3
We31 Sa29 Su31 We30 Fr31* Mo30 We31 Sa31* Tu30 Th31 Su30 Tu31 2
Th31 Su29 Mo31 Th30 Sa31* Tu30 Th31 Su31 We30 Fr31* Mo30 We31 2
Fr31* Mo29 Tu31 Fr30 Su31 We30 Fr31* Mo31 Th30 Sa31* Tu30 Th31 3
Sa31* Tu29 We31 Sa30* Mo31 Th30 Sa31* Tu31 Fr30 Su31 We30 Fr31* 4
with a minimum of 2 and a maximum of 4 double dates in the year.
|
Posted by Charlie
on 2005-09-14 14:07:39 |