All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Triangular Triples (Posted on 2007-04-21) Difficulty: 3 of 5
Tom, Dick and Harry were searching for 3-digit triangular numbers (numbers of the form k*(k+1)/2) that are themselves each the product of three different triangular numbers greater than 1 (so 1*3*15 = 45 doesn't count, nor does 3*10*10 = 300 because of the duplicated 10).

Each of them found a different triangular number. One of the triangular factors is found only in Harry's solution. Another of the triangular factors is found only in Tom's solution.

What are the three triangular factors making up Dick's solution?

See The Solution Submitted by Charlie    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
only one solution? | Comment 4 of 7 |
I'm afraid I'm losing something in the puzzle.

I have several possibilities... As far as I can understand from what I read, i got upon a lot of triangular numbers that could fit Harry's, Tom's and, subsequentally, Dick's solution...

For instance, 180 (3*6*10), 378 (3*6*15), 504 (3*6*28), ..., are all triangular numbers with factors that are exclusive (10, 15, 28, ...). Dick's solution could be 648 (3*6*36), 810 (3*6*45), 990 (3*6*55), amongst many others... and without even leaving the 3*6 base...

What's on then?

  Posted by vj on 2007-04-23 09:33:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information