Prove that
√(1+√(1+√(1+√(1+...))) = 1+1/(1+1/(1+1/(1+...)))
Let:
v(1+v(1+v(1+v(1+...))) = p (say)......(i)
Or, 1+p = p^2
or, 1+ 1/p = p
Or, p
= (1+ 1/p)
= (1+1/(1+ 1/p))
= (1+1/(1+ 1/(1+p))))
------------------------------------------------
-----------------------------------------------
= 1+1/(1+1/(1+1/(1+...))) ..........(ii)
Combining (i) and (ii), we obtain:
v(1+v(1+v(1+v(1+...))) = 1+1/(1+1/(1+1/(1+...)))
Edited on May 11, 2007, 2:33 pm