All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Modified Product = Sum (Posted on 2010-05-24) Difficulty: 3 of 5
Determine all possible quintuplet(s) (A,B,C,D,E) of positive integers, with A ≤ B ≤ C ≤ D ≤ E, that satisfy this equation:

(A-1)*(B-2)*(C-3)*(D-4)*(E-5) = A+B+C+D+E

Prove that these are the only quintuplet(s) that exist.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution + proof | Comment 1 of 2

FOR a = 1 TO 25
FOR b = a TO 26
FOR c = b TO 27
FOR d = c TO 28
FOR e = d TO 29
  lhs = (a - 1) * (b - 2) * (c - 3) * (d - 4) * (e - 5)
  rhs = a + b + c + d + e
  IF lhs = rhs THEN PRINT a; b; c; d; e, lhs; rhs
NEXT
NEXT
NEXT
NEXT
NEXT

produces

 A  B  C  D   E             LHS  RHS    
 2  3  4  6  25              40  40
 2  3  5  5  25              40  40
 2  3  5  6  12              28  28
 2  4  4  5  25              40  40
 2  4  4  6  12              28  28
 2  4  5  5  12              28  28
 3  3  4  5  25              40  40
 3  3  4  6  12              28  28
 3  3  5  5  12              28  28
 3  4  4  5  12              28  28
 
In (A-1)*(B-2)*(C-3)*(D-4)*(E-5) = A+B+C+D+E
 
The RHS <= 5*E.

If D > 20 and therefore E > 20, LHS > 16*(E-5), so

LHS > 16*E - 80 = 5*E + 11*E - 80 > 5*E + 220 - 80 = 5*E + 140 > RHS

So the cases covered by the program exhaust the range over which the LHS could equal the RHS.

The limits and argument could be made tighter, but the numbers chosen are sufficient for the proof.


  Posted by Charlie on 2010-05-24 13:44:42
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information