All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Games
God and the Devil (Posted on 2005-02-08) Difficulty: 4 of 5
God and the Devil decide to play a game. God will start by picking an infinite sequence of moves of the form "left", "right", "up", and "down". The Devil responds by creating a finite maze with an exit and by placing God somewhere inside. God then follows His pre-selected sequence to traverse the maze. Unmakable moves are ignored; for example, if the next move is "left" and there is a wall to the left of the current square, God goes on to the next move in the sequence without moving.

If God escapes the maze in finite time, He wins. Otherwise, the Devil wins.

Assuming both agents act optimally, who will win?

(assume that the maze is formed by deleting some edges from a rectangular grid, and that it has no isolated regions; i.e., it is always possible to get to the exit from any point inside the maze)

See The Solution Submitted by David Shin    
Rating: 3.6842 (19 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts re: Puzzle Answer | Comment 65 of 68 |
(In reply to Puzzle Answer by K Sengupta)


There is NO other option for me but to consider the LEMMA  provided by David Shin which is as follows: 
"For any finite maze, there is a sequence of finite moves that the God can take to escape the maze, no matter what His starting position is."
I will strive for a semi- independent proof of this lemma and hopefully be able to finish this off.


Edited on September 19, 2022, 5:41 am
  Posted by K Sengupta on 2022-09-19 05:36:03

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information