All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Mean Crossed Reversal Muse (Posted on 2023-03-19) Difficulty: 3 of 5
Determine all possible pairs (p, q) of base ten positive integers that satisfy this system of equations:
  • arithmetic mean (p, q) = 10x+y
  • geometric mean (p, q) = 10y+x
where, each of p and q is a nonzero base ten integer, with p≠q, and each of x and y is a base ten digit.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 2 of 3 |
for p=1:500
  for q=1:500
    if p~=q
      amean=(p+q)/2;
      if amean==floor(amean) && amean>9 && amean < 100
        gmean=sqrt(p*q);
        if gmean==floor(gmean) && gmean<100
          if floor(amean/10)==mod(gmean,10)
            if floor(gmean/10)==mod(amean,10)
              disp([p q (p+q)/2 sqrt(p*q)])
            end
          end
        end
      end
    end
  end
end

finds
                 mean
    p     q   arith geom
   32    98    65    56
   98    32    65    56

  Posted by Charlie on 2023-03-19 10:41:38
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information