All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Roman Square (Posted on 2009-05-13) Difficulty: 3 of 5
Place one of the letters C, L, X, V or I into each of the 25 cells of a 5x5 grid so that each row and each column forms a 5-letter roman number under 300 (using the modern standard subtractive notation in which IV = 4, IX = 9, XL = 40, XLIX = 49, XC = 90, etc.). No roman number is used more than once, so there are ten different roman numbers. The rows are in descending order of value top-to-bottom and the columns are also in descending order left-to-right.

What is the sum of the values of the ten roman numbers?

  Submitted by Charlie    
Rating: 5.0000 (1 votes)
Solution: (Hide)
The 5-character roman numbers under 300 are

XVIII  18   CLIII 153
XXIII  23   CLVII 157
XXVII  27   CLXII 162
XXXII  32   CLXIV 164
XXXIV  34   CLXVI 166
XXXVI  36   CLXIX 169
XXXIX  39   CLXXI 171
XLIII  43   CLXXV 175
XLVII  47   CLXXX 180
LVIII  58   CXCII 192
LXIII  63   CXCIV 194
LXVII  67   CXCVI 196
LXXII  72   CXCIX 199
LXXIV  74   CCIII 203
LXXVI  76   CCVII 207
LXXIX  79   CCXII 212
LXXXI  81   CCXIV 214
LXXXV  85   CCXVI 216
XCIII  93   CCXIX 219
XCVII  97   CCXXI 221
CVIII 108   CCXXV 225
CXIII 113   CCXXX 230
CXVII 117   CCXLI 241
CXXII 122   CCXLV 245
CXXIV 124   CCLII 252
CXXVI 126   CCLIV 254
CXXIX 129   CCLVI 256
CXXXI 131   CCLIX 259
CXXXV 135   CCLXI 261
CXLII 142   CCLXV 265
CXLIV 144   CCLXX 270
CXLVI 146   CCXCI 291
CXLIX 149   CCXCV 295

These can be fit into the grid as follows:

CCXXX
CLXXX
LXXXI
XXVII
XVIII
 1072

CCLXX
CLXXX
XXXVI
XXXII
XVIII
 1072

CCXXX
CLXXV
LXXXI
XXVII
XXIII
 1072

CCLXX
CLXXV
XXXVI
XXXII
XXIII
 1072

Regardless of which of the four possible arrays is used, the total is 1072.

DECLARE FUNCTION seq! (x$)
DIM SHARED rNo$(100), ct, rVal(100)
CLS
FOR n = 1 TO 300
q = n \\ 1000: r = n MOD 1000
r$ = STRING$(q, "M")
n2 = r
q = n2 \\ 100: r = n2 MOD 100
SELECT CASE q
   CASE 9: r$ = r$ + "CM"
   CASE 5 TO 8: r$ = r$ + "D" + STRING$(q - 5, "C")
   CASE 4: r$ = r$ + "CD"
   CASE 0 TO 3: r$ = r$ + STRING$(q, "C")
END SELECT
n2 = r
q = n2 \\ 10: r = n2 MOD 10
SELECT CASE q
   CASE 9: r$ = r$ + "XC"
   CASE 5 TO 8: r$ = r$ + "L" + STRING$(q - 5, "X")
   CASE 4: r$ = r$ + "XL"
   CASE 0 TO 3: r$ = r$ + STRING$(q, "X")
END SELECT
n2 = r
q = n2
SELECT CASE q
   CASE 9: r$ = r$ + "IX"
   CASE 5 TO 8: r$ = r$ + "V" + STRING$(q - 5, "I")
   CASE 4: r$ = r$ + "IV"
   CASE 0 TO 3: r$ = r$ + STRING$(q, "I")
END SELECT
IF LEN(r$) = 5 THEN
  ct = ct + 1: rNo$(ct) = r$: rVal(ct) = n
  row = (ct - 1) MOD 33 + 1: col = ((ct - 1) \\ 33) * 12 + 1
  LOCATE row, col
  PRINT r$;
  PRINT USING "####"; n
END IF
NEXT

DO: LOOP UNTIL INKEY$ > ""
CLS
PRINT ct

FOR n1 = 1 TO ct - 4
PRINT n1;
FOR n2 = n1 + 1 TO ct - 3
FOR n3 = n2 + 1 TO ct - 2
FOR n4 = n3 + 1 TO ct - 1
FOR n5 = n4 + 1 TO ct

 good = 1
 FOR psn = 1 TO 5
    vert$(psn) = MID$(rNo$(n5), psn, 1) + MID$(rNo$(n4), psn, 1)
 + MID$(rNo$(n3), psn, 1) + MID$(rNo$(n2), psn, 1) + MID$(rNo$(n1), psn, 1)
    sq(psn) = seq(vert$(psn))
    IF sq(psn) = n1 OR sq(psn) = n2 OR sq(psn) = n3 OR sq(psn) = n4 
  OR sq(psn) = n5 THEN good = 0: EXIT FOR
    IF sq(psn) = 0 THEN good = 0: EXIT FOR
    IF psn > 1 THEN
      IF sq(psn) >= sq(psn - 1) THEN good = 0: EXIT FOR
    END IF
 NEXT psn
 IF good THEN
  PRINT
  PRINT rNo$(n5): PRINT rNo$(n4): PRINT rNo$(n3)
 : PRINT rNo$(n2): PRINT rNo$(n1)
  tot = rVal(n1) + rVal(n2) + rVal(n3) + rVal(n4) + rVal(n5)
  FOR psn = 1 TO 5
   tot = tot + rVal(sq(psn))
  NEXT
  PRINT tot: PRINT
  tot = rVal(n1) + rVal(n2) + rVal(n3) + rVal(n4) + rVal(n5)
  FOR psn = 1 TO 5
   tot = tot + rVal(sq(psn))
  NEXT
  'DO: LOOP UNTIL INKEY$ > ""
 END IF
NEXT
NEXT
NEXT
NEXT
NEXT

FUNCTION seq (x$)
 FOR i = 1 TO ct
  IF rNo$(i) = x$ THEN seq = i: EXIT FUNCTION
 NEXT
 seq = 0
END FUNCTION

From Enigma No. 1533, "Roman grid", by Richard England, New Scientist, 21 February 2009, page 24.

Comments: ( You must be logged in to post comments.)
  Subject Author Date
Puzzle ThoughtsK Sengupta2024-04-28 22:33:06
computer solution (all of them)Daniel2009-05-17 16:57:44
re: A solutionSing4TheDay2009-05-14 11:48:18
Solutionanother solutionStephanie2009-05-13 18:14:12
SolutionA solutionSing4TheDay2009-05-13 12:17:15
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information