All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
8th Term from Term Product (Posted on 2016-03-07) Difficulty: 3 of 5
The first three terms of sequence {C(n)} are 1440, 1716 and 1848. These are obtained by multiplying the corresponding terms of two arithmetic sequences:{A(n)} and {B(n)}.
Find the 8th term of {C(n)}

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 4 of 4 |
1440 has factors:

2^5
3^2
5^1

so there are 6*3*2 = 36 ways of allocating it to sequence A vs sequence B.

1716 has factors:
 
2^2
3^1
11^1
13^1
 
so there are 3*2*2*2 = 24 ways of allocating it to sequence A vs sequence B.

And there are 36*24 = 864 possibilities to check to see if the products of their third members multiply to produce 1848.

Twelve of these 864 possibilities result in the next product being 1848, and all of them produce the same product sequence, C:

term
      A    B     C
1 15 96 1440
2 13 132 1716
3 11 168 1848
4 9 204 1836
5 7 240 1680
6 5 276 1380
7 3 312 936
8 1 348 348

1 45 32 1440
2 39 44 1716
3 33 56 1848
4 27 68 1836
5 21 80 1680
6 15 92 1380
7 9 104 936
8 3 116 348

1 30 48 1440
2 26 66 1716
3 22 84 1848
4 18 102 1836
5 14 120 1680
6 10 138 1380
7 6 156 936
8 2 174 348

1 90 16 1440
2 78 22 1716
3 66 28 1848
4 54 34 1836
5 42 40 1680
6 30 46 1380
7 18 52 936
8 6 58 348

1 60 24 1440
2 52 33 1716
3 44 42 1848
4 36 51 1836
5 28 60 1680
6 20 69 1380
7 12 78 936
8 4 87 348

1 180 8 1440
2 156 11 1716
3 132 14 1848
4 108 17 1836
5 84 20 1680
6 60 23 1380
7 36 26 936
8 12 29 348

1 8 180 1440
2 11 156 1716
3 14 132 1848
4 17 108 1836
5 20 84 1680
6 23 60 1380
7 26 36 936
8 29 12 348

1 24 60 1440
2 33 52 1716
3 42 44 1848
4 51 36 1836
5 60 28 1680
6 69 20 1380
7 78 12 936
8 87 4 348

1 16 90 1440
2 22 78 1716
3 28 66 1848
4 34 54 1836
5 40 42 1680
6 46 30 1380
7 52 18 936
8 58 6 348

1 48 30 1440
2 66 26 1716
3 84 22 1848
4 102 18 1836
5 120 14 1680
6 138 10 1380
7 156 6 936
8 174 2 348

1 32 45 1440
2 44 39 1716
3 56 33 1848
4 68 27 1836
5 80 21 1680
6 92 15 1380
7 104 9 936
8 116 3 348

1 96 15 1440
2 132 13 1716
3 168 11 1848
4 204 9 1836
5 240 7 1680
6 276 5 1380
7 312 3 936
8 348 1 348

where the 8th term is 348.



DefDbl A-Z
Dim crlf$, fct(20, 1), fct1(20, 1), fct2(20, 1)


Private Sub Form_Load()
 Form1.Visible = True
 
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 f1 = factor(1440)
 For i = 1 To f1
   fct1(i, 0) = fct(i, 0)
   fct1(i, 1) = fct(i, 1)
   Text1.Text = Text1.Text & fct(i, 0) & Str(fct(i, 1)) & crlf
 Next
 Text1.Text = Text1.Text & f1 & crlf
 f2 = factor(1716)
 For i = 1 To f2
   fct2(i, 0) = fct(i, 0)
   fct2(i, 1) = fct(i, 1)
   Text1.Text = Text1.Text & fct(i, 0) & Str(fct(i, 1)) & crlf
 Next
 Text1.Text = Text1.Text & f2 & crlf
 
 ' the output of the above determined the following code, for easier coding:
 ' (avoiding recursive calls)
 
 For fcta2 = 0 To 5
 For fcta3 = 0 To 2
 For fcta5 = 0 To 1
   terma1 = Int(2 ^ fcta2 * 3 ^ fcta3 * 5 ^ fcta5 + 0.5)
   termb1 = 1440 / terma1
 For fctb2 = 0 To 2
 For fctb3 = 0 To 1
 For fctb11 = 0 To 1
 For fctb13 = 0 To 1
   terma2 = Int(2 ^ fctb2 * 3 ^ fctb3 * 11 ^ fctb11 * 13 ^ fctb13 + 0.5)
   termb2 = 1716 / terma2
   
   terma3 = 2 * terma2 - terma1
   termb3 = 2 * termb2 - termb1
   termc3 = terma3 * termb3
   terma = terma3: termb = termb3
   preva = terma2: prevb = termb2
   If termc3 = 1848 Then
     Text1.Text = Text1.Text & 1 & Str(terma1) & Str(termb1) & Str(1440) & crlf
     Text1.Text = Text1.Text & 2 & Str(terma2) & Str(termb2) & Str(1716) & crlf
     Text1.Text = Text1.Text & 3 & Str(terma3) & Str(termb3) & Str(termc3) & crlf
     
     For termno = 4 To 8
       newterma = 2 * terma - preva
       newtermb = 2 * termb - prevb
       preva = terma: prevb = termb
       terma = newterma: termb = newtermb
       termc = terma * termb
       Text1.Text = Text1.Text & termno & Str(terma) & Str(termb) & Str(termc) & crlf
     Next
     Text1.Text = Text1.Text & crlf
   End If
 Next
 Next
 Next
 Next
 Next
 Next
 Next
 
 
 
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub

Function factor(num)
 diffCt = 0: good = 1
 n = Abs(num): If n > 0 Then limit = Sqr(n) Else limit = 0
 If limit <> Int(limit) Then limit = Int(limit + 1)
 dv = 2: GoSub DivideIt
 dv = 3: GoSub DivideIt
 dv = 5: GoSub DivideIt
 dv = 7
 Do Until dv > limit
   GoSub DivideIt: dv = dv + 4 '11
   GoSub DivideIt: dv = dv + 2 '13
   GoSub DivideIt: dv = dv + 4 '17
   GoSub DivideIt: dv = dv + 2 '19
   GoSub DivideIt: dv = dv + 4 '23
   GoSub DivideIt: dv = dv + 6 '29
   GoSub DivideIt: dv = dv + 2 '31
   GoSub DivideIt: dv = dv + 6 '37
   If INKEY$ = Chr$(27) Then s$ = Chr$(27): Exit Function
 Loop
 If n > 1 Then diffCt = diffCt + 1: fct(diffCt, 0) = n: fct(diffCt, 1) = 1
 factor = diffCt
 Exit Function

DivideIt:
 cnt = 0
 Do
  q = Int(n / dv)
  If q * dv = n And n > 0 Then
    n = q: cnt = cnt + 1: If n > 0 Then limit = Sqr(n) Else limit = 0
    If limit <> Int(limit) Then limit = Int(limit + 1)
   Else
    Exit Do
  End If
 Loop
 If cnt > 0 Then
   diffCt = diffCt + 1
   fct(diffCt, 0) = dv
   fct(diffCt, 1) = cnt
 End If
 Return
End Function


  Posted by Charlie on 2016-03-07 13:43:58
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information