All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
Your conclusion requested (Posted on 2016-11-03) Difficulty: 3 of 5
i. If there is a king in the hand then there is an ace, or if there isn’t a king in the hand then there is an ace, but not both.
ii. There is a king in the hand.

Given the above premises, what can you infer?

No Solution Yet Submitted by Ady TZIDON    
Rating: 3.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution A better way Comment 9 of 9 |
A shorter and simpler way than the one that I sent some days ago is as follows:

Premise (i):    NOT ( (king -> ace) AND (NOT king -> ace) )
Premise (ii):    king

gives:    (iii):    (king & -(king -> ace)) OR (king & -(-king -> ace))

(iii):    (K & -(K -> A)) v (K & -(-K -> A))
<->    ((K & -(-K v A)) v (K & -(K v A)))
<->    (K & (K & -A)) v (K & (-K & -A))
<->    ((K & K) & (K & -A)) v ((K & -K) & (K & -A))    

The contradiction '(K & -K)' in the 2nd disjunct makes the whole &-condition of that disjunct FALSE.

<->    (K & (K & ~A)) v FALSE
<->    ((K & K) & (K & ~A)) v FALSE)
<->    ((K & ~A) v FALSE)
<->    ((FALSE v K) & (FALSE v ~A))
<->    K&-A

I liked this problem. It is contra-intuitive and sets a good trap.

  Posted by ollie on 2016-11-17 13:32:58
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2019 by Animus Pactum Consulting. All rights reserved. Privacy Information