All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Games
Oleg or Erdös? (Posted on 2017-05-26) Difficulty: 4 of 5
Oleg and (the ghost of) Erdös play the following game. Oleg chooses a non- negative integer a1 with at most 1000 digits.

In Round i the following happens:
Oleg tells the number ai to Erdös, who then chooses a non negative integer bi, and then Oleg defines ai+1 = |ai-bi| or ai+1 = ai + bi.
Erdös wins if a20 is a power of 10, otherwise Oleg wins.

Who is the winner, Oleg or Erdös?

No Solution Yet Submitted by Ady TZIDON    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Thoughts | Comment 4 of 8 |
Let p_i be the smallest tenth power not exceeding a_i.  Have Erdos chooses b_i = p_i - a_i.  Oleg loses immediately if he adds them (Erdos can then choose 0 afterwards), so he subtracts them.  This does not guarantee a win (the a_i sequence can get stuck in a cycle 6,2,6,2,...), but it does allow Erdos to control what terms are in the a_i sequence.

  Posted by Brian Smith on 2017-05-27 09:56:49
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information