All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Is it a conic? (Posted on 2017-04-19) Difficulty: 3 of 5
You've probably seen this shape before. It is several straight lines whose outline seems to be curved. Connect the following pairs of points with segments:

(1,0) and (0,8)
(2,0) and (0,7)
(3,0) and (0,6)
(8,0) and (0,1)

The 8 segments seem to form the outline a curve, but what curve? Is it a circle or maybe one branch of a hyperbola? Some other conic? Does it's equation have some other nice form?

No Solution Yet Submitted by Jer    
Rating: 4.0000 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Another approach | Comment 6 of 7 |
All eight lines Jer specifies have the sum of their x- and y-intercepts equal to 9.  These can be expressed using a parameter n=1 to 8: (9-n)*x + n*y = n*(9-n).  Letting n vary over all reals creates a set of lines all outside of the curve.

Treat the equation as quadratic in n, which rearranged yields: n^2 + (-9-x+y)*n + (9x) = 0
Which implies n = ((9+x-y) +/- sqrt[(9+x-y)^2-36x])/2

If the discriminant is positive then two values of n represent the two different linear equations containing point (x,y).
If the discriminant is negative then there is no line containing the point (x,y).
Finally, if the discriminant is zero then that point is on the curve and the line it is on is tangent to the curve at that point.

Thus we can define the curve as (9+x-y)^2-36x = 0 and locus of all lines as (9+x-y)^2-36x >= 0.

So what conic is it? First simplify to standard form: x^2 - 2xy + y^2 - 18x - 18y + 81 = 0
Then use the discriminant D = b^2-4*a*c (D>0 implies hyperbola, D=0 implies parabola, D<0 implies ellipse): D = (-2)^2-4*1*1 = 0.
Because D=0, we have a parabola.

  Posted by Brian Smith on 2017-04-20 23:41:14
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information