 All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars  perplexus dot info  Two sums of digits (Posted on 2017-09-02) asd+fgh=jkl

Believe me - there are numerous solutions of the above alphametic.

I. What is the minimal possible sum of participating digits?
ii. Same question for as+df=gh

 No Solution Yet Submitted by Ady TZIDON No Rating Comments: ( Back to comment list | You must be logged in to post comments.) computer solution (spoilers) | Comment 2 of 5 | DefDbl A-Z
Dim crlf\$

Form1.Visible = True

Text1.Text = ""
crlf = Chr\$(13) + Chr\$(10)

minsum = 9999: minsum2 = 9999

n\$ = "1234567890": h\$ = n
Do
asd = Val(Left(n, 3))
fgh = Val(Mid(n, 4, 3))
jkl = Val(Mid(n, 7, 3))
tot = 45 - Val(Right(n, 1))
If asd + fgh = jkl Then
If tot < minsum Then minsum = tot: minsumdigs\$ = Left(n, 9)
End If
asv = Val(Left(n, 2))
dfv = Val(Mid(n, 3, 2))
ghv = Val(Mid(n, 5, 2))
tot = 0
For i = 1 To 6
tot = tot + Val(Mid(n, i, 1))
Next
If asv + dfv = ghv Then
If tot < minsum2 Then minsum2 = tot: minsumdigs2\$ = Left(n, 6)
End If
permute n
DoEvents
Loop Until n = h

Text1.Text = minsum & "  " & minsumdigs & crlf
Text1.Text = Text1.Text & minsum2 & "  " & minsumdigs2 & crlf

Text1.Text = Text1.Text & crlf & " done"

End Sub

finds

36  125478603
17  132740

meaning

36 is the minimum sum, for  125 + 478 = 603
17 is the minimum sum, for 13 + 27 = 40

 Posted by Charlie on 2017-09-02 12:54:29 Please log in:

 Search: Search body:
Forums (0)