All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers > Sequences
Lots of lods (Posted on 2017-09-10) Difficulty: 3 of 5
Let's denote the largest odd divisor of a positive integer n by lod(n).
Thus lod(1)=1; lod(72)=9; lod(2k+1)=2k+1; lod(2^k)=1.

Prove the following statement:
Sum of all values of lod(k), (k>1) from k=n+1 to k=2n, inclusive, equals n2.

Example: take n=7: lod(8,9,10,11,12,13,14)= (1,9,5,11,3,13,7), sum of the values within the last pair of brackets is 49, indeed.

Source: Shown to me as a trick i.e. "the wizard" guesses the result a priori.

No Solution Yet Submitted by Ady TZIDON    
Rating: 4.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Alternate approach | Comment 5 of 7 |

Personally, I think Jer's inductive proof is much more elegant, but here's one of those alternate proofs he hoped for.

If lod(x) = z then x = z * 2^p
similarly if lod(y) = lod(x) = z then y = z * 2^q
(Also, lod(x) is necessarily <= x)

Assume x > y (which implies p > q), and consider x - y

x - y = z*2^p - z*2^q = z * 2^q * (2^(p-q) - 1)

2^(p-q) - 1 >= 1 (since p > q) and so 
x - y >= z * 2^q 
x - y >= y
x >= 2y

Suppose y is in the range [n+1, 2n]. Then x cannot be in the same range since it's at least 2y. 

As a result, no two numbers in the range [n+1, 2n] can have the same lod. 

There are n numbers in the range [n+1, 2n] whose lod's must come from [1,3,5...2n-1] and each of these must be unique. Since both sets contain n members, and repeats are forbidden, they must be permutations of each other, and therefore they have the same sum. That sum is just the sum of the first n odds: n^2

  Posted by Paul on 2017-09-11 11:34:05
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (1)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information