All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Just 4 different digits (Posted on 2017-12-03) Difficulty: 3 of 5
Let m*n=w (i)

m is a 3-digit number
so is n
w is a 6-digit number

In equation (i) only 4 distinct digits are used.

Find the possible equations.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution re(2): Too many - here's some | Comment 5 of 10 |
(In reply to re: Too many - here's some by Ady TZIDON)

Answers for the revised puzzle:


 500 500 250000
 501 501 251001
 502 502 252004

 525 525 275625
 526 526 276676
 527 527 277729

Same format as before, but this time m=n so w=m^2

Note, the 500^2 case uses only 3 different digits, so if, in the puzzle, only is changed to exactly, the second solution above becomes the unique solution.

DefDbl A-Z
Dim crlf$


Private Sub Form_Load()
 Form1.Visible = True
 
 
 Text1.Text = ""
 crlf = Chr$(13) + Chr$(10)
 
 For m = 100 To 999
   ms$ = LTrim(Str(m))
   n = m
   ns$ = LTrim(Str(n))
   w = m * n
   ws$ = LTrim(Str(w))
   If Len(ws) = 6 Then
    tst$ = ms + ns + ws
    used$ = ""
    good = 1
    For i = 1 To Len(tst)
      If InStr(used, Mid(tst, i, 1)) = 0 Then
         used = used + Mid(tst, i, 1)
         DoEvents
         If Len(used) > 4 Then good = 0: Exit For
      End If
    Next
    If good Then
      ct = ct + 1
      If ct >= 3 Then
      Text1.Text = Text1.Text & Str(m - 2) & Str(n - 2) & Str((m - 2) * (n - 2)) & crlf
      Text1.Text = Text1.Text & Str(m - 1) & Str(n - 1) & Str((m - 1) * (n - 1)) & crlf
      Text1.Text = Text1.Text & Str(m) & Str(n) & Str(w) & crlf & crlf
      End If
    Else
      ct = 0
    End If
   End If
 Next
 
 Text1.Text = Text1.Text & crlf & " done"
  
End Sub

Edited on December 3, 2017, 12:06 pm
  Posted by Charlie on 2017-12-03 11:45:15

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information