All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Just 4 different digits (Posted on 2017-12-03) Difficulty: 3 of 5
Let m*n=w (i)

m is a 3-digit number
so is n
w is a 6-digit number

In equation (i) only 4 distinct digits are used.

Find the possible equations.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: @ Charlie: Answers for the revised puzzle: | Comment 8 of 10 |
(In reply to @ Charlie: Answers for the revised puzzle: by Ady TZIDON)

aha! I did not notice the non-zero clause. mea culpa


But due to the ambiguity of the English language (and probably many other languages) "only 4 different non-zero digits" might mean that any digits that are non-zero must fit within the count of only four different ones, while any number of zeros might be allowed. Just for sake of argument, following that reasoning:

 400 400 160000
 401 401 160801
 402 402 161604

 497 497 247009
 498 498 248004
 499 499 249001
 500 500 250000
 501 501 251001
 502 502 252004
 503 503 253009

 525 525 275625
 526 526 276676
 527 527 277729

 600 600 360000
 601 601 361201
 602 602 362404
 603 603 363609

 640 640 409600
 641 641 410881
 642 642 412164

 664 664 440896
 665 665 442225
 666 666 443556

 898 898 806404
 899 899 808201
 900 900 810000
 901 901 811801

 948 948 898704
 949 949 900601
 950 950 902500
 951 951 904401

 995 995 990025
 996 996 992016
 997 997 994009
 998 998 996004
 999 999 998001

In each case only 4 different digits other than zero are used.

But yes I do understand the actual intent of your exclusion of zero, as not allowing zeros at all.  Just a comment on non-mathematical (human) language.

  Posted by Charlie on 2017-12-03 19:29:13
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information