All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 It is not 42 (Posted on 2018-04-29)
The alphametic

SEVEN*SIX= PUZZLES
has a unique solution.

Find it.

 No Solution Yet Submitted by Ady TZIDON No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution Comment 1 of 1
`seven six     puzzles25954 238     6177052`

DefDbl A-Z
Dim crlf\$, dr

Form1.Visible = True
Text1.Text = ""
crlf = Chr(13) + Chr(10)

s\$ = "1234567890": hld\$ = s
Do
DoEvents
If InStr(s, "0") > 2 Then
sv = Val(Mid(s, 1, 1))
p = Val(Mid(s, 2, 1))
e = Val(Mid(s, 3, 1))
v = Val(Mid(s, 4, 1))
n = Val(Mid(s, 5, 1))
i = Val(Mid(s, 6, 1))
x = Val(Mid(s, 7, 1))
u = Val(Mid(s, 8, 1))
z = Val(Mid(s, 9, 1))
l = Val(Mid(s, 10, 1))
seven = 10000 * sv + 1010 * e + 100 * v + n
six = 100 * sv + 10 * i + x
puzzles = 1000000 * p + 100000 * u + 11000 * z + 100 * l + 10 * e + sv
If seven * six = puzzles Then
Text1.Text = Text1.Text & seven & Str(six) & "     " & puzzles & crlf
End If
End If
DoEvents
permute s
Loop Until s = hld

Text1.Text = Text1.Text & crlf & " done"

End Sub

Sub permute(a\$)

x\$ = ""
For i = Len(a\$) To 1 Step -1
l\$ = x\$
x\$ = Mid\$(a\$, i, 1)
If x\$ < l\$ Then Exit For
Next

If i = 0 Then
For j = 1 To Len(a\$) \ 2
x\$ = Mid\$(a\$, j, 1)
Mid\$(a\$, j, 1) = Mid\$(a\$, Len(a\$) - j + 1, 1)
Mid\$(a\$, Len(a\$) - j + 1, 1) = x\$
Next
Else
For j = Len(a\$) To i + 1 Step -1
If Mid\$(a\$, j, 1) > x\$ Then Exit For
Next
Mid\$(a\$, i, 1) = Mid\$(a\$, j, 1)
Mid\$(a\$, j, 1) = x\$
For j = 1 To (Len(a\$) - i) \ 2
x\$ = Mid\$(a\$, i + j, 1)
Mid\$(a\$, i + j, 1) = Mid\$(a\$, Len(a\$) - j + 1, 1)
Mid\$(a\$, Len(a\$) - j + 1, 1) = x\$
Next
End If
End Sub

 Posted by Charlie on 2018-04-29 10:42:25

 Search: Search body:
Forums (1)