 All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars  perplexus dot info  Non-zero integers (Posted on 2018-06-20) Find all solutions of
(x+y^2)*(x^2+y)=(x-y)^3 .

x and y have to be non-zero integers.

 No Solution Yet Submitted by Ady TZIDON No Rating Comments: ( Back to comment list | You must be logged in to post comments.) this seems the solution | Comment 1 of 3
(x+y^2)*(x^2+y)=(x-y)^3

x^3 + xy + (xy)^2 + y^3 = x^3 - 3 x^2 y + 3 x y^2 - y^3

xy + (xy)^2 + y^3 = - 3 x^2 y + 3 x y^2 - y^3

Asking Wolfram Alpha to solve this gives:

If y = -3, x = -9/5

If y <> -3:

x = -(-3 y + sqrt(-(y + 1)^2 (8 y - 1)) + 1)/(2 y + 6)

or

x = (3 y + sqrt(-(y + 1)^2 (8 y - 1)) - 1)/(2 (y + 3))

A map of the continuous curve is at:

but of course we want integers.

So then

For y = -100000 To 100000
If y <> -3 Then
If (-(y + 1) ^ 2 * (8 * y - 1)) >= 0 Then
x = -(-3 * y + Sqr(-(y + 1) ^ 2 * (8 * y - 1)) + 1) / (2 * y + 6)
xr = Int(x + 0.5)
If Abs(x - xr) < 0.00000001 Then Text1.Text = Text1.Text & y & "   " & x & crlf

x = (3 * y + Sqr(-(y + 1) ^ 2 * (8 * y - 1)) - 1) / (2 * (y + 3))
xr = Int(x + 0.5)
If Abs(x - xr) < 0.00000001 Then Text1.Text = Text1.Text & y & "   " & x & crlf
End If
End If
DoEvents
Next

finds

`  y   x -21   9-10   8 -6   9 -1  -1 -1  -1  0   0`

Of course we don't count the last set, as the puzzle specifically excludes zeros. (-1,-1) appears to be a double solution.

 Posted by Charlie on 2018-06-20 13:22:51 Please log in:

 Search: Search body:
Forums (0)