Let a be the smallest prime greater than 1000.
Let b=sqrt((2a+1)^2+4)+2a+1
Divide b by 2, and express the result as a continued fraction.
Happy New Year.
a=1009
b=sqrt((2(1009)+1)^2+4)+2(1009)+1=sqrt((2018+1)^2+4)+2018+1=sqrt(2019^2+4)+2019=sqrt(4076361+4)+2019=sqrt(4076365)+2019
b/2=(sqrt(4076365)+2019)/2=[2019, 2019, 2019, 2019, 2019, ...]

Posted by Math Man
on 20190101 14:11:19 