All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Uniform distribution (Posted on 2019-01-25)
6 cards, labeled 1,2, ...6, are randomly put in 3 different envelopes, at least one card in each.

Evaluate the probability of 2,2,2 distribution.

 No Solution Yet Submitted by Ady TZIDON No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution | Comment 5 of 9 |
The envelopes for the successive cards are shown below, in all the possibilities. Those cases with each envelope receiving at least one card are marked with an asterisk. If the distribution is two in each envelope, there is a second asterisk.

111111
111112
111113
111121
111122
111123  *
111131
111132  *
111133
111211
111212
111213  *
111221
111222
111223  *
111231  *
111232  *
111233  *
111311
111312  *
111313
111321  *
111322  *
111323  *
111331
111332  *
111333
112111
112112
112113  *
112121
112122
112123  *
112131  *
112132  *
112133  *
112211
112212
112213  *
112221
112222
112223  *
112231  *
112232  *
112233  * *
112311  *
112312  *
112313  *
112321  *
112322  *
112323  * *
112331  *
112332  * *
112333  *
113111
113112  *
113113
113121  *
113122  *
113123  *
113131
113132  *
113133
113211  *
113212  *
113213  *
113221  *
113222  *
113223  * *
113231  *
113232  * *
113233  *
113311
113312  *
113313
113321  *
113322  * *
113323  *
113331
113332  *
113333
121111
121112
121113  *
121121
121122
121123  *
121131  *
121132  *
121133  *
121211
121212
121213  *
121221
121222
121223  *
121231  *
121232  *
121233  * *
121311  *
121312  *
121313  *
121321  *
121322  *
121323  * *
121331  *
121332  * *
121333  *
122111
122112
122113  *
122121
122122
122123  *
122131  *
122132  *
122133  * *
122211
122212
122213  *
122221
122222
122223  *
122231  *
122232  *
122233  *
122311  *
122312  *
122313  * *
122321  *
122322  *
122323  *
122331  * *
122332  *
122333  *
123111  *
123112  *
123113  *
123121  *
123122  *
123123  * *
123131  *
123132  * *
123133  *
123211  *
123212  *
123213  * *
123221  *
123222  *
123223  *
123231  * *
123232  *
123233  *
123311  *
123312  * *
123313  *
123321  * *
123322  *
123323  *
123331  *
123332  *
123333  *
131111
131112  *
131113
131121  *
131122  *
131123  *
131131
131132  *
131133
131211  *
131212  *
131213  *
131221  *
131222  *
131223  * *
131231  *
131232  * *
131233  *
131311
131312  *
131313
131321  *
131322  * *
131323  *
131331
131332  *
131333
132111  *
132112  *
132113  *
132121  *
132122  *
132123  * *
132131  *
132132  * *
132133  *
132211  *
132212  *
132213  * *
132221  *
132222  *
132223  *
132231  * *
132232  *
132233  *
132311  *
132312  * *
132313  *
132321  * *
132322  *
132323  *
132331  *
132332  *
132333  *
133111
133112  *
133113
133121  *
133122  * *
133123  *
133131
133132  *
133133
133211  *
133212  * *
133213  *
133221  * *
133222  *
133223  *
133231  *
133232  *
133233  *
133311
133312  *
133313
133321  *
133322  *
133323  *
133331
133332  *
133333
211111
211112
211113  *
211121
211122
211123  *
211131  *
211132  *
211133  *
211211
211212
211213  *
211221
211222
211223  *
211231  *
211232  *
211233  * *
211311  *
211312  *
211313  *
211321  *
211322  *
211323  * *
211331  *
211332  * *
211333  *
212111
212112
212113  *
212121
212122
212123  *
212131  *
212132  *
212133  * *
212211
212212
212213  *
212221
212222
212223  *
212231  *
212232  *
212233  *
212311  *
212312  *
212313  * *
212321  *
212322  *
212323  *
212331  * *
212332  *
212333  *
213111  *
213112  *
213113  *
213121  *
213122  *
213123  * *
213131  *
213132  * *
213133  *
213211  *
213212  *
213213  * *
213221  *
213222  *
213223  *
213231  * *
213232  *
213233  *
213311  *
213312  * *
213313  *
213321  * *
213322  *
213323  *
213331  *
213332  *
213333  *
221111
221112
221113  *
221121
221122
221123  *
221131  *
221132  *
221133  * *
221211
221212
221213  *
221221
221222
221223  *
221231  *
221232  *
221233  *
221311  *
221312  *
221313  * *
221321  *
221322  *
221323  *
221331  * *
221332  *
221333  *
222111
222112
222113  *
222121
222122
222123  *
222131  *
222132  *
222133  *
222211
222212
222213  *
222221
222222
222223
222231  *
222232
222233
222311  *
222312  *
222313  *
222321  *
222322
222323
222331  *
222332
222333
223111  *
223112  *
223113  * *
223121  *
223122  *
223123  *
223131  * *
223132  *
223133  *
223211  *
223212  *
223213  *
223221  *
223222
223223
223231  *
223232
223233
223311  * *
223312  *
223313  *
223321  *
223322
223323
223331  *
223332
223333
231111  *
231112  *
231113  *
231121  *
231122  *
231123  * *
231131  *
231132  * *
231133  *
231211  *
231212  *
231213  * *
231221  *
231222  *
231223  *
231231  * *
231232  *
231233  *
231311  *
231312  * *
231313  *
231321  * *
231322  *
231323  *
231331  *
231332  *
231333  *
232111  *
232112  *
232113  * *
232121  *
232122  *
232123  *
232131  * *
232132  *
232133  *
232211  *
232212  *
232213  *
232221  *
232222
232223
232231  *
232232
232233
232311  * *
232312  *
232313  *
232321  *
232322
232323
232331  *
232332
232333
233111  *
233112  * *
233113  *
233121  * *
233122  *
233123  *
233131  *
233132  *
233133  *
233211  * *
233212  *
233213  *
233221  *
233222
233223
233231  *
233232
233233
233311  *
233312  *
233313  *
233321  *
233322
233323
233331  *
233332
233333
311111
311112  *
311113
311121  *
311122  *
311123  *
311131
311132  *
311133
311211  *
311212  *
311213  *
311221  *
311222  *
311223  * *
311231  *
311232  * *
311233  *
311311
311312  *
311313
311321  *
311322  * *
311323  *
311331
311332  *
311333
312111  *
312112  *
312113  *
312121  *
312122  *
312123  * *
312131  *
312132  * *
312133  *
312211  *
312212  *
312213  * *
312221  *
312222  *
312223  *
312231  * *
312232  *
312233  *
312311  *
312312  * *
312313  *
312321  * *
312322  *
312323  *
312331  *
312332  *
312333  *
313111
313112  *
313113
313121  *
313122  * *
313123  *
313131
313132  *
313133
313211  *
313212  * *
313213  *
313221  * *
313222  *
313223  *
313231  *
313232  *
313233  *
313311
313312  *
313313
313321  *
313322  *
313323  *
313331
313332  *
313333
321111  *
321112  *
321113  *
321121  *
321122  *
321123  * *
321131  *
321132  * *
321133  *
321211  *
321212  *
321213  * *
321221  *
321222  *
321223  *
321231  * *
321232  *
321233  *
321311  *
321312  * *
321313  *
321321  * *
321322  *
321323  *
321331  *
321332  *
321333  *
322111  *
322112  *
322113  * *
322121  *
322122  *
322123  *
322131  * *
322132  *
322133  *
322211  *
322212  *
322213  *
322221  *
322222
322223
322231  *
322232
322233
322311  * *
322312  *
322313  *
322321  *
322322
322323
322331  *
322332
322333
323111  *
323112  * *
323113  *
323121  * *
323122  *
323123  *
323131  *
323132  *
323133  *
323211  * *
323212  *
323213  *
323221  *
323222
323223
323231  *
323232
323233
323311  *
323312  *
323313  *
323321  *
323322
323323
323331  *
323332
323333
331111
331112  *
331113
331121  *
331122  * *
331123  *
331131
331132  *
331133
331211  *
331212  * *
331213  *
331221  * *
331222  *
331223  *
331231  *
331232  *
331233  *
331311
331312  *
331313
331321  *
331322  *
331323  *
331331
331332  *
331333
332111  *
332112  * *
332113  *
332121  * *
332122  *
332123  *
332131  *
332132  *
332133  *
332211  * *
332212  *
332213  *
332221  *
332222
332223
332231  *
332232
332233
332311  *
332312  *
332313  *
332321  *
332322
332323
332331  *
332332
332333
333111
333112  *
333113
333121  *
333122  *
333123  *
333131
333132  *
333133
333211  *
333212  *
333213  *
333221  *
333222
333223
333231  *
333232
333233
333311
333312  *
333313
333321  *
333322
333323
333331
333332
333333

540 cases have at least one card in each envelope; of those 90 have the distribution 2,2,2. That's 1/6.

So was the presence of a card in each envelope discovered after the fact, or was one card seeded in each envelope first. If the latter, then three of the cards were not distributed randomly, but the puzzle states all six were distributed randomly.

For a = 1 To 3
env(a) = env(a) + 1
For b = 1 To 3
env(b) = env(b) + 1
For c = 1 To 3
env(c) = env(c) + 1
For d = 1 To 3
env(d) = env(d) + 1
For e = 1 To 3
env(e) = env(e) + 1
For f = 1 To 3
DoEvents
env(f) = env(f) + 1

Text1.Text = Text1.Text & a & b & c & d & e & f & "  "
If env(1) > 0 And env(2) > 0 And env(3) > 0 Then
Text1.Text = Text1.Text & "* ": cond1 = cond1 + 1
If env(1) = 2 And env(2) = 2 And env(3) = 2 Then Text1.Text = Text1.Text & "*": cond2 = cond2 + 1
End If
Text1.Text = Text1.Text & crlf

env(f) = env(f) - 1
Next
env(e) = env(e) - 1
Next
env(d) = env(d) - 1
Next
env(c) = env(c) - 1
Next
env(b) = env(b) - 1
Next
env(a) = env(a) - 1
Next

Text1.Text = Text1.Text & cond1 & Str(cond2) & "done"

 Posted by Charlie on 2019-01-26 15:47:54

 Search: Search body:
Forums (0)