All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
2 sets of primes (Posted on 2019-02-04) Difficulty: 3 of 5
M is the smallest possible sum for a set of four distinct primes such that the sum of any three is prime - (p1,p2,p3,p4}.
N is the smallest possible sum for a set of six distinct primes such that the sum of any five is prime - (q1,q2,q3,q4,q5,q6}.

Find M & N and the corresponding sets.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
proof 5 impossible | Comment 3 of 5 |
An even easier proof that 5 is impossible.  Pick any four numbers in the set that do not include 2.  There is always at least one such set. They are all odd and sum to a non-prime even number.

q.e.d.

  Posted by Steve Herman on 2019-02-05 19:30:05
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information