_{n}is the n-th Fibonacci number defined by the recurrence relation F

_{n}= F

_{n-1}+ F

_{n-2}with F

_{1}= F

_{2}= 1. If n is a perfect square and n > 4, then find the value of the determinant below

| F

_{1}F

_{2}... F

_{√n}|

| F

_{√n+1}F

_{√n+2}... F

_{2√n}|

| . . . |

| . . . |

| F

_{n-√n+1}F

_{n-√n+2}... F

_{n}|