All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
Prime wisdom (Posted on 2019-05-14) Difficulty: 3 of 5
In a 4-word proverb each letter was consistently replaced by a prime number
of 1 or 2 digits.
Spaces betweEn the words were left intact, spaces between digits were erased.

Decode the proverb represented by

3235 71319311 313193714119331 5132931

and comment on its meaning and origin.

BTW: Analytical solution is more challenging and recommended.

See The Solution Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts a computer beginning | Comment 1 of 3
The possible segmentations of the four words into primes are as follows:

 3 2 3 5
BABC
 3 23 5
BIC

 7 13 19 3 11
DFHBE
 71 3 19 3 11
TBHBE

 3 13 19 3 71 41 19 3 31
BFHBTMHBK
 31 3 19 3 71 41 19 3 31
KBHBTMHBK

 5 13 29 31
CFJK

Each line is followed by an alphabetic representation based on the letter's position in the alphabet being the ordinal number of the prime involved; for example 5 is the third prime and therefore is replaced by C in the alphabetic representation.

The above is from

DefDbl A-Z
Dim crlf$, s$, wd(40), w$

Private Sub Form_Load()
 Text1.Text = ""
 crlf$ = Chr(13) + Chr(10)
 Form1.Visible = True
 
 Do
   p = nxtprm(p)
   If p < 100 Then Text1.Text = Text1.Text & Str(p): ct = ct + 1
 Loop Until p > 100
 Text1.Text = Text1.Text & crlf & ct & crlf & crlf
 
 s$ = "3235 71319311 313193714119331 5132931 "
 
 Do
   ix = InStr(s, " ")
   w$ = Left(s, ix - 1): s = LTrim(Mid(s, ix + 1))
   wd(0) = 0
   addon
   Text1.Text = Text1.Text & crlf
 Loop Until s = ""
 
 
End Sub

Sub addon()
  For part = 1 To 2
   If Len(w) >= part Then
    trnum = Val(Left(w, part))
    If prmdiv(trnum) = trnum And trnum > 1 Then
      savew$ = w
      wd(0) = wd(0) + 1
      
      wd(wd(0)) = trnum
      w = Mid(w, part + 1)
      If w = "" Then
         For i = 1 To wd(0)
           Text1.Text = Text1.Text & Str(wd(i))
         Next
         Text1.Text = Text1.Text & crlf
         For i = 1 To wd(0)
           For j = 1 To 25
             If prm(j) = wd(i) Then Exit For
           Next
           lt$ = Mid("ABCDEFGHIJKLMNOPQRSTUVWXYZ", j, 1)
           Text1.Text = Text1.Text & lt$
         Next
         Text1.Text = Text1.Text & crlf
      Else
         addon
      End If
      
      wd(0) = wd(0) - 1
      w = savew
      DoEvents
    End If
   End If
  Next
End Sub

Function prm(i)
  Dim p As Long
  Open "17-bit primes.bin" For Random As #111 Len = 4
  Get #111, i, p
  prm = p
  Close 111
End Function

Function prmdiv(num)
 Dim n, dv, q
 If num = 1 Then prmdiv = 1: Exit Function
 n = Abs(num): If n > 0 Then limit = Sqr(n) Else limit = 0
 If limit <> Int(limit) Then limit = Int(limit + 1)
 dv = 2: GoSub DivideIt
 dv = 3: GoSub DivideIt
 dv = 5: GoSub DivideIt
 dv = 7
 Do Until dv > limit
   GoSub DivideIt: dv = dv + 4 '11
   GoSub DivideIt: dv = dv + 2 '13
   GoSub DivideIt: dv = dv + 4 '17
   GoSub DivideIt: dv = dv + 2 '19
   GoSub DivideIt: dv = dv + 4 '23
   GoSub DivideIt: dv = dv + 6 '29
   GoSub DivideIt: dv = dv + 2 '31
   GoSub DivideIt: dv = dv + 6 '37
 Loop
 If n > 1 Then prmdiv = n
 Exit Function

DivideIt:
 Do
  q = Int(n / dv)
  If q * dv = n And n > 0 Then
    prmdiv = dv: Exit Function
   Else
    Exit Do
  End If
 Loop

 Return
End Function

Function nxtprm(x)
  Dim n
  n = x + 1
  While prmdiv(n) < n Or n < 2
    n = n + 1
  Wend
  nxtprm = n
End Function

This leads to eight overall possible ordinary (ordinary except that it's possible that a letter represents itself--no guarantee against that) cryptograms:

BABC  DFHBE  BFHBTMHBK  CFJK

BABC  DFHBE  KBHBTMHBK  CFJK

BABC  TBHBE  BFHBTMHBK  CFJK

BABC  TBHBE  KBHBTMHBK  CFJK

BIC  DFHBE  BFHBTMHBK  CFJK

BIC  DFHBE  KBHBTMHBK  CFJK

BIC  TBHBE  BFHBTMHBK  CFJK

BIC  TBHBE  KBHBTMHBK  CFJK


If BFHBTMHBK does not represent a proper name it could be KICKBACKS or REARGUARD. KBHBTMHBK doesn't have any common-word translation in my word list, but still could be a proper name.

Edited on May 14, 2019, 2:47 pm
  Posted by Charlie on 2019-05-14 14:46:42

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (3)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2019 by Animus Pactum Consulting. All rights reserved. Privacy Information