All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Grid Pathways (Posted on 2002-07-22)
(First things first - I don't know a solution to this, but the puzzle occurred to me a few hours ago, and I thought people might be interested in it)

Imagine a rectangular (or square) grid of any size, every square white. If the grid is "x" squares across and "y" squares high, what is the minimum number of squares ("n") that must be shaded so that no white square is adjacent to more than 2 other white squares?
(For this puzzle, diagonally adjacent squares are not considered to be adjacent)

So, for example, if the grid is simply a 3x3 then the only square that needs shading is the centre one, then all others squares only touch two others - i.e. for x=3 y=3, n=1

a) Is there an formula to calculate "n" that will work for all paired-values of "x" and "y"?
b) If not, what is "n" for a chessboard-sized x=8 y=8 (post your suggested minimum using a standard chess-like "A7" type of description for a list of all your shaded squares)?

 See The Solution Submitted by Nick Reed Rating: 3.9167 (12 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Is it? | Comment 2 of 29 |
I am not sure if there is a formula but your second question's answeer seems to be n = 24

b2,b3,b4,b5,b6,b7,c3,c7,d2,d4,d5,d7,e2,e4,e5,e7,f2,f7,g2,g3,g4,g5,g6,g7

The shaded squares make a nice pattern and I do suspect there to be a formula
 Posted by Dulanjana on 2002-07-22 06:52:38

 Search: Search body:
Forums (0)
Random Problem
Site Statistics
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox: