All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Around the bend (Posted on 2004-03-13) Difficulty: 2 of 5
What is the longest pole I can swing around the 90 corner of a hallway of unit width?

For the simplicity of this problem, the pole must be kept exactly horizontal, while maneuvering it.

See The Solution Submitted by SilverKnight    
Rating: 2.5000 (4 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Non-calculus solution | Comment 4 of 8 |

Consider a line of length L that touches both outer sides of the corridor, and the inner corner.  Let the line extend beyond the inner corner by x units on one side, and y on the other.

Then, by similar triangles, y = 1/x.

By Pythagoras, L = (1 + x) + (1 + 1/x) = z + 2z = (z + 1) - 1, where z = x + 1/x.

By the Arithmetic Mean-Geometric Mean inequality, the minimum value of z = x + 1/x is 2, when x = 1.  (Or consider (sqrt(x) - 1/sqrt(x)) >= 0.)

Since (z + 1) - 1 is an increasing function for z >= -1, the minimum value of L occurs when z = 2. Hence the minimum of L = 8, and of L = 2sqrt(2).

This is the shortest line; hence the longest pole.


  Posted by Nick Hobson on 2004-03-13 18:36:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2021 by Animus Pactum Consulting. All rights reserved. Privacy Information