All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Triangular Coordinates (Posted on 2004-10-26)
Prove that there are an infinite number of distinct ordered pairs (m, n) of integers such that, for every positive integer t, the number mt + n is a triangular number if and only if t is a triangular number as well

 No Solution Yet Submitted by Victor Zapana Rating: 2.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 What's this? | Comment 8 of 11 |
(In reply to re: Solution by Richard)

I notice that the problem says "...the number mt + n is a triangular number if and only if t = 1." when in the queue, it said "...the number mt + n is a triangular number if and only if t is a triangular number as well."

This makes a HUGE difference in the problem.  I want to know who changed it just before posting, and why.

OOO has the correct solution, because he happens to be a journeyman, and had seen the problem as it originally was.

 Posted by Tristan on 2004-10-26 21:55:48

 Search: Search body:
Forums (0)