All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
Rummy Luck (Posted on 2005-01-07) Difficulty: 4 of 5
In the card game of Rummy, all players start with the same number of cards and the aim is to fill your hand such that all cards are in exactly one meld. Each individual meld is composed of 3 or 4 cards and can each can be completed two ways: cards of the same number/court or consecutive cards of the same suit. (This would mean you have a meld of 3 and a meld of 4 in 7 card rummy and 2 melds of 3 and a meld of 4 in 10 card rummy.) Each individual ace can count as higher than a king or lower than a 2, but not both. (This means K, A, 2 is not allowed.)

What are the probabilities of being dealt a winning hand when: (Note that all decks are without jokers)

- Playing seven card rummy with one deck?
- Playing seven-card rummy with two decks?
- Playing ten-card rummy with one deck?
- Playing ten-card rummy with two decks?
- One of the cards was inadvertantly dropped on the floor before dealing for seven-card rummy?

No Solution Yet Submitted by Rob    
Rating: 3.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts wow - big problem | Comment 1 of 9

- Playing seven card rummy with one deck?

Please say this isn't the easiest way:

There are four winning hands-

A set of 3 and a set of 4

A set of 3 and a run of 4

A run of 3 and a set of 4

A run of 3 and a run of 4

They need to enumeralted separately, then summed.

The combination hands are trickiest - having one changes the probability of the other.

I'll work on this later if I have time.

The other parts of the problem are just variations.

-Jer


  Posted by Jer on 2005-01-07 17:29:01
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (9)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information