All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
Figure Eights (Posted on 2005-02-15) Difficulty: 5 of 5
Suppose that I drew an infinite number of disjoint closed curves in the plane (such as circles, squares, etc.). Suppose that I then tell you that there is one curve for each positive real number.

You would not have too much trouble believing my assertions at this point. For example, I could have drawn all circles with center at the origin. They are all disjoint, and for each positive real number x, there is a corresponding circle - namely, the circle of radius x.

But suppose that I also tell you that all the curves I drew were figure eights. Can you believe my assertions now?

(A figure eight is a curve in the plane obtained from the basic "8" shape by any combination of translation, rotation, expansion, or shrinking.)

See The Solution Submitted by David Shin    
Rating: 4.2000 (5 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(4): still thinking / cardinality | Comment 18 of 34 |
(In reply to re(3): still thinking by David Shin)

If there were a way to map each irrational number to one and only one rational number, then we could make an 8 representing each irrational number and hide it inside the 8 of its unique mapped rational number. 


  Posted by Larry on 2005-02-17 04:42:35
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information