All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Set of Spheres (Posted on 2005-11-03)
Let A, B, and C be spheres that are tangent pairwise and whose points of tangency are distinct. Let {D1, D2, ..., Dn} be a set of spheres each of which is tangent to spheres A, B, and C. For i = 1 to n, Di is externally tangent to Di+1 (where Dn+1 = D1).

What is the value of n?

 See The Solution Submitted by Bractals Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 First Thoughts | Comment 1 of 7

The statement of the problem suggests that n is not dependent on the relative sizes of the spheres A,B, and C.  If this is true then we could assume, at least at first, that A, B, and C are equal.  Then orient the 3 spheres so that their centers are in the horizontal plane.  I'm having  trouble picturing the orientation of the D spheres.  Apparently, the D's are like a string of n pearls, where the pearls can be of varying sizes.  If the pearls encircled spheres A, B, and C horizontally, then no pearl would be touching all 3 of the ABC's.  So the center of the pearls (the D spheres) must be on the vertical axis.  A linear string of pearls might work.  If n is odd, the middle pearl (n+1)/2 could be on the same plane as the ABC spheres, then a larger sphere above and below, and so on.  Except that in that case, spheres D1 and Dn wouldn't be tangent to each other.  Unless somehow spheres D1 and Dn have infinite radius and could be somehow considered to be tangent at opposite ends of the universe.

I can picture 2 pearls, D1 and D2, tangent to each other and each tangent to the ABC spheres.  But I can't picture any more D spheres.   So my answer so far, is n=2.

 Posted by Larry on 2005-11-03 17:50:57
Please log in:
 Login: Password: Remember me: Sign up! | Forgot password

 Search: Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2020 by Animus Pactum Consulting. All rights reserved. Privacy Information