All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
A Composite Determination Problem (Posted on 2006-04-23) Difficulty: 3 of 5
Determine whether or not N is a composite number, where

N = 675*2621 + 677*2610 - 1

NOTE:
A prime number (or a prime) is a natural number that has exactly two (distinct) natural number divisors, which are 1 and the prime number itself. A composite number is a positive integer which has a positive divisor other than one or itself. By definition, every integer greater than one is either a prime number or a composite number. The numbers 0 and 1 are considered to be neither prime nor composite.

See The Solution Submitted by K Sengupta    
Rating: 4.3333 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution brute force | Comment 9 of 14 |
list
   10   N=675*(26^21)+677*(26^10)-1
   15   print N
   20   for I=1 to 5000000
   30   P=nxtprm(P)
   35   if P*P>N then cancel for:goto 80
   40   while N@P=0
   50          print P;:N=N//P
   60   wend
   70   next
   80   print N
OK
run
 349739013110925226193694221284351
 29  1949  18451  33409  54199861  185204990569
OK

The number in question is 349739013110925226193694221284351
and factors into the primes:

29  1949  18451  33409  54199861  185204990569


  Posted by Charlie on 2006-04-23 14:40:04
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information