Take a square and place two equally spaced points on each side (trisecting the sides.) Starting at one corner label the points and corners around the perimeter A, B, C, D, …, L.
Connect with straight lines the pairs AI, BH, CG, DL, EK, and FJ. The resulting figure has four squares and pieces around the edge that can be rearranged to make 6 more (for a total of 10.)
How could you use a similar method to dissect a square into twentynine squares? How about 58? What numbers are possible by this method?
(In reply to
Solution by Leming)
In:
"For 29 squares:
Divide each side into 5 segments. So the first side would have A,B,C,D,E and F. Then F,G,H,I,J and K make the second side. K,L,M,N,O and P for the third, and P,Q,R,S,T and A for the fourth.
Connect AN, BM and similar parallel lines. Connect FS, GR, and their parrellel lines. Each point should have a parallel line drawn from it.
Line AN will be sqrt(5^2 + 2^2) = sqrt(29) long. Each square will be sqrt(25/29) units long, creating 29 squares of area 25/29."
... are you saying for example, to make a line from O parallel to NA, so as to intersect a side midway between R and S? ... and from T parallel to SF to midway between C and D?

Posted by Charlie
on 20060516 10:25:22 