All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Remainder (Posted on 2003-03-01)
Show that the remainder when 2^1990 (2 to the power of 1990) is divided by 1990 equals 1024.

 See The Solution Submitted by Anoop Rating: 3.8750 (8 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re: Step by Step | Comment 6 of 12 |
(In reply to Step by Step by Charlie)

That process never exceeds ordinary non-extended precision, and the successive powers of 1024 mod 1990 are
1836, 1504, 1826, 1214, 1376, 104, 1026, 1894, 1196, 854, 886, 1814, 866, 1234,
1956, 1004, 1256, 604, 1596, 514, 976, 444, 936, 1274, 1126, 814, 1716, 14,
406, 1824, 1156, 1684, 1076, 1354, 1456, 434, 646, 824, 16, 464, 1516, 184,
1356, 1514, 126, 1664, 496, 454, 1226, 1724, 246, 1164, 1916, 1834, 1446, 144,
196, 1704, 1656, 264, 1686, 1134, 1046, 484, 106, 1084, 1586, 224, 526, 1324,
586, 1074, 1296, 1764, 1406, 974, 386, 1244, 256, 1454, 376, 954, 1796, 344,
26, 754, 1966, 1294, 1706, 1714, 1946, 714, 806, 1484, 1246, 314, 1146, 1394,
626, 244, 1106, 234, 816, 1774, 1696, 1424, 1496, 1594, 456, 1284, 1416, 1264,
836, 364, 606, 1654, 206, 4, 116, 1374, 46, 1334, 876, 1524, 416, 124, 1606,
804, 1426, 1554, 1286, 1474, 956, 1854, 36, 1044, 426, 414, 66, 1914, 1776,
1754, 1116, 524, 1266, 894, 56, 1624, 1326, 644, 766, 324, 1436, 1844, 1736,
594, 1306, 64, 1856, 94, 736, 1444, 86, 504, 686, 1984, 1816, 924, 926, 984,
676, 1694, 1366, 1804, 576, 784, 846, 654, 1056, 774, 556, 204, 1936, 424, 356,
374, 896, 114, 1316, 354, 316, 1204, 1086, 1644, 1906, 1544, 996, 1024, this last being 1024^199 mod 1990 or 2^1990 mod 1990.
 Posted by Charlie on 2003-03-02 09:35:51

 Search: Search body:
Forums (0)