All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Polyhedra construction (Posted on 2006-07-17)
A certain polyhedron is constructed such that each vertex is the intersection of five triangles. How many vertices are there?

Was that easy? Try these.

...such that each vertex is the intersection of...
1. three squares and a triangle
2. three triangles and a square
3. four triangles and a square
4. a triangle, square, pentagon, and square in that order
5. a decagon, hexagon, and square

Notice any patterns?

 See The Solution Submitted by Tristan No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 Solution | Comment 1 of 4
`Let `
`     v = number of polyhedron vertices`
`     f = number of polyhedron faces`
`     e = number of polyhedron edges`
`   f_n = number of polyhedron faces          that are n-gons`
`   m_n = number of n-gons at a         polyhedron vertex`
`Then the following apply to each case:`
`   1) Euler's polyhedron theorem: v + f - e = 2`
`   2) m_n*v = n*f_n for each n`
`   3) f = sum of f_n`
`   4) 2*e = sum of n*f_n`
`Case 0: five triangles -`
`        3*f_3   v = -------          5`
`   f = f_3`
`        3*f_3   e = -------          2`
`   ===> v = 12`
`Case 1: three squares and a triangle -`
`        3*f_3     4*f_4   v = ------- = -------          1         3`
`   f = f_3 + f_4`
`        3*f_3 + 4*f_4   e = ---------------              2`
`   ===> v = 24`
`Case 2: three triangles and a square -`
`        3*f_3     4*f_4   v = ------- = -------          3         1`
`   f = f_3 + f_4`
`        3*f_3 + 4*f_4   e = ---------------              2`
`   ===> v = 8`
`Case 3: four triangles and a square -`
`        3*f_3     4*f_4   v = ------- = -------          4         1`
`   f = f_3 + f_4`
`        3*f_3 + 4*f_4   e = ---------------              2`
`   ===> v = 24`
`Case 4: a triangle, square, pentagon, and        square in that order -`
`        3*f_3     4*f_4     5*f_5   v = ------- = ------- = -------          1         2         1`
`   f = f_3 + f_4 + f_5`
`        3*f_3 + 4*f_4 + 5*f_5   e = -----------------------                  2`
`   ===> v = 60`
`Case 5: a decagon, hexagon, and square -`
`        4*f_4     6*f_6     10*f_10   v = ------- = ------- = ---------          1         1          1`
`   f = f_4 + f_6 + f_10`
`        4*f_4 + 6*f_6 + 10*f_10   e = -------------------------                  2`
`   ===> v = 120`
` `

Edited on July 17, 2006, 12:23 pm
 Posted by Bractals on 2006-07-17 12:21:44

 Search: Search body:
Forums (6)