All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Weird function challenge (Posted on 2006-08-15)
Find a function f:R->R (R the set of real numbers), such that

1. f has a discontinuity in every rational number, but is continous everywhere else, and
2. f is monotonic: x<y → f(x)<f(y)

Note: Textbooks frequently present examples of functions that meet only the first condition; requiring monotonicity makes for a slightly more challenging problem.

 See The Solution Submitted by JLo Rating: 4.3000 (10 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re: Nice solution!!! Now, you Want to try this | Comment 26 of 33 |
(In reply to Nice solution!!! Now, you Want to try this by JLo)

JLo:

2) I don't understand this new question.  Are you saying that in your solution p^(-2) is the size of the each jump discontinuity?

Steve

 Posted by Steve Herman on 2006-08-24 23:00:08

 Search: Search body:
Forums (0)