All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 BRIAN = LINDA = LEVIK = CORAL (Posted on 2006-12-08)
Can you find a five-figure number, with distinct digits between 1 and 9, which satisfies all of the following encoded equations?

BRIAN x 2 = CONGA
LINDA x 3 = NAILER
LEVIK x 4 = VARIED
CORAL x 6 = NESTED

Repeated letters within an equation indicate the replication of digits. However, the same letter in different equations does not necessarily refer to the same digit.

 See The Solution Submitted by Josie Faulkner Rating: 4.3750 (8 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 the programmatic way | Comment 2 of 8 |

DECLARE FUNCTION checkPat! (a\$, b\$)
FOR n = 12345 TO 98765
n\$ = LTRIM\$(STR\$(n))
IF checkPat(n\$, "brian") THEN

a\$ = LTRIM\$(STR\$(n * 2))
IF checkPat(n\$ + a\$, "brianconga") THEN

b\$ = LTRIM\$(STR\$(n * 3))
IF checkPat(n\$ + b\$, "lindanailer") THEN

c\$ = LTRIM\$(STR\$(n * 4))
IF checkPat(n\$ + c\$, "levikvaried") THEN

d\$ = LTRIM\$(STR\$(n * 6))
IF checkPat(n\$ + d\$, "coralnested") THEN

PRINT n; "* 2 ="; n * 2
PRINT n; "* 3 ="; n * 3
PRINT n; "* 4 ="; n * 4
PRINT n; "* 6 ="; n * 6

END IF

END IF

END IF

END IF

END IF
NEXT n

FUNCTION checkPat (a\$, b\$)
d\$ = SPACE\$(10)
IF LEN(a\$) <> LEN(b\$) THEN checkPat = 0: EXIT FUNCTION
FOR i = 1 TO LEN(b\$)
l\$ = MID\$(b\$, i, 1)
p = VAL(MID\$(a\$, i, 1)) + 1
IF MID\$(d\$, p, 1) = " " THEN
IF INSTR(d\$, l\$) > 0 THEN checkPat = 0: EXIT FUNCTION
MID\$(d\$, p, 1) = l\$
ELSEIF MID\$(d\$, p, 1) <> l\$ THEN
checkPat = 0: EXIT FUNCTION
END IF
NEXT i
checkPat = 1
END FUNCTION

finds

45163 * 2 = 90326
45163 * 3 = 135489
45163 * 4 = 180652
45163 * 6 = 270978

 Posted by Charlie on 2006-12-08 11:02:45
Please log in:
 Login: Password: Remember me: Sign up! | Forgot password

 Search: Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information