All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 A Reciprocal And Square Problem (Posted on 2007-07-10)
Find all real pairs (p, q) satisfying the following system of equations:
p - 1/p - q2 = 0

q/p + pq = 4

 See The Solution Submitted by K Sengupta Rating: 3.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re: Solution | Comment 2 of 7 |
(In reply to Solution by Praneeth)

Using the values given for p and q in all combinations, I get the following values:

`         p                  q              p - 1/p + q^2       q/p + pq -2.825993776082988 -1.572302755514847  -4.944271909999159   4.999689428353011 .3538578210834085 -1.572302755514847  -4.944271909999159  -4.999689428353011-.3538578210834085 -1.572302755514847   0                   4.999689428353011 2.825993776082988 -1.572302755514847   0                  -4.999689428353011-2.825993776082988  1.572302755514847  -4.944271909999159  -4.999689428353011 .3538578210834085  1.572302755514847  -4.944271909999159   4.999689428353011-.3538578210834085  1.572302755514847   0                  -4.999689428353011 2.825993776082988  1.572302755514847   0                   4.999689428353011`
`from`
`                                                           `
`DEFDBL A-ZCLSFOR a = -1 TO 1 STEP 2FOR b = -1 TO 1 STEP 2FOR c = -1 TO 1 STEP 2 q = a * SQR(2 * (SQR(5) - 1)) p = b * (SQR(5) - 1) + c * SQR(7 - 2 * SQR(5)) PRINT p; TAB(20); q; TAB(40); p - 1 / p - q * q; TAB(60); q / p + p * qNEXTNEXTNEXT`
` `

While there are some zeros for the first formula, none of the second produces a 4.

 Posted by Charlie on 2007-07-10 11:08:38

 Search: Search body:
Forums (0)