All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Seeking Sums With Inradius And Exradius (Posted on 2007-10-08) Difficulty: 3 of 5
Triangle PQR is equilateral with PQ = QR = RP = 2. The line QP is extended to meet at point S such that P lies between S and Q.

Y is length of the inradius of Triangle SPR while Z is the length of the exradius of Triangle SQR with respect to the side QR.

Determine Y+Z.

See The Solution Submitted by K Sengupta    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts Problem Generalization Comment 4 of 4 |


Let the sentence

"Triangle PQR is equilateral with PQ = QR = RP = 2."

be replaced by

"Triangle PQR is isosceles with QR = RP."

The answer is the altitude of triangle PQR with respect to vertex R.


  Posted by Bractals on 2007-10-08 23:00:26
Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2021 by Animus Pactum Consulting. All rights reserved. Privacy Information