**L**and

**P**are

*positive integers*that satisfy this equation:

**(L+1)**

^{3}– L^{3}= P^{2}For example,

**8**;

^{3}- 7^{3}= 13^{2}**105**, and so on.

^{3}- 104^{3}= 181^{2}Prove that

**P**is always expressible as the sum of squares of

*two consecutive positive integers*.

(For example,

**13 = 2**;

^{2}+ 3^{2}**181 = 9**, and so on.)

^{2}+ 10^{2}