All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Minimum area of a triangle (Posted on 2008-07-30) Difficulty: 3 of 5
Find the minimum area of a triangle whose sides and altitudes are six different integers.

See The Solution Submitted by pcbouhid    
Rating: 2.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Computer Solution | Comment 4 of 10 |
(In reply to Computer Solution by Bractals)

A Basic program that finds the same result as Bractals' (and multiples thereof):

DECLARE FUNCTION acos# (x#)
DEFDBL A-Z
DIM SHARED pi

pi = ATN(1) * 4

FOR t = 3 TO 3000
 FOR s1 = 1 TO t / 3
   FOR s2 = s1 + 1 TO INT((t - s1) / 2)
    s3 = t - s1 - s2
    IF s1 > s3 - s2 THEN
     a1 = acos((s2 * s2 + s3 * s3 - s1 * s1) / (2 * s2 * s3))
     a2 = acos((s1 * s1 + s3 * s3 - s2 * s2) / (2 * s1 * s3))
     a3 = acos((s2 * s2 + s1 * s1 - s3 * s3) / (2 * s2 * s1))
     alt1 = s2 * SIN(a1)
     alt2 = s3 * SIN(a2)
     alt3 = s1 * SIN(a3)
     IF ABS(alt1 - INT(alt1 + .5)) < .0000001# THEN
     IF ABS(alt2 - INT(alt2 + .5)) < .0000001# THEN
     IF ABS(alt3 - INT(alt3 + .5)) < .0000001# THEN
       alt1 = INT(alt1 + .5)
       alt2 = INT(alt2 + .5)
       alt3 = INT(alt3 + .5)
       n(1) = s1: n(2) = s2: n(3) = s3
       n(4) = alt1: n(5) = alt2: n(6) = alt3
       good = 1
       FOR i = 1 TO 5
         FOR j = i + 1 TO 6
           IF n(i) = n(j) THEN good = 0: EXIT FOR
         NEXT
         IF good = 0 THEN EXIT FOR
       NEXT
       IF good THEN PRINT s1; s2; s3, alt1; alt2; alt3
     END IF
     END IF
     END IF
    END IF
   NEXT s2
 NEXT s1
NEXT

FUNCTION acos (x)
 IF x = 0 THEN
   acos = pi / 2
 ELSE
   a = ATN(SQR(1 - x * x) / x)
   IF a < 0 THEN a = a + pi
   acos = a
 END IF
 REM
END FUNCTION

 


  Posted by Charlie on 2008-07-30 18:51:00
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information