All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Just ones and nines (Posted on 2008-12-03) Difficulty: 2 of 5
See the example below. Using only 1īs and 9īs, the 3x3 grid is filled so the 6 three-digit numbers so formed (in the 3 rows and 3 columns) are in the ascending order shown by the numbers around the grid:
      3   1   6
    +---+---+---+
  2 | 1 | 1 | 9 |
    +---+---+---+
  5 | 9 | 1 | 9 |
    +---+---+---+
  4 | 9 | 1 | 1 |
    +---+---+---+
That is, the 1st is in the 2nd column (111), the 2nd is in the 1st row (119), the 3rd is in the 1st column (199), and so on.

Do the same with these three 4x4 grids.
      3   7   6   4         3   2   8   5         2   4   5   6
    +---+---+---+---+     +---+---+---+---+     +---+---+---+---+
  5 |   |   |   |   |   1 |   |   |   |   |   1 |   |   |   |   |
    +---+---+---+---+     +---+---+---+---+     +---+---+---+---+
  2 |   |   |   |   |   7 |   |   |   |   |   7 |   |   |   |   |
    +---+---+---+---+     +---+---+---+---+     +---+---+---+---+
  8 |   |   |   |   |   6 |   |   |   |   |   3 |   |   |   |   |
    +---+---+---+---+     +---+---+---+---+     +---+---+---+---+
  1 |   |   |   |   |   4 |   |   |   |   |   8 |   |   |   |   |
    +---+---+---+---+     +---+---+---+---+     +---+---+---+---+

See The Solution Submitted by pcbouhid    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution | Comment 1 of 2
1991     1199     1199
1119     9991     9919
9911     9191     1991
1111     1999     9991

from

DECLARE SUB choose (r!, c!)
CLEAR , , 25000
DIM SHARED g(4, 4), n(8), p(8), cta, ctb, ctc

choose 1, 1
PRINT cta, ctb, ctc

END

SUB choose (r, c)
 
 FOR i = 1 TO 9 STEP 8
   g(r, c) = i
   IF r = 4 AND c = 4 THEN
     n(1) = g(1, 1) * 1000 + g(1, 2) * 100 + g(1, 3) * 10 + g(1, 4): p(1) = 1
     n(2) = g(2, 1) * 1000 + g(2, 2) * 100 + g(2, 3) * 10 + g(2, 4): p(2) = 2
     n(3) = g(3, 1) * 1000 + g(3, 2) * 100 + g(3, 3) * 10 + g(3, 4): p(3) = 3
     n(4) = g(4, 1) * 1000 + g(4, 2) * 100 + g(4, 3) * 10 + g(4, 4): p(4) = 4
     n(5) = g(1, 1) * 1000 + g(2, 1) * 100 + g(3, 1) * 10 + g(4, 1): p(5) = 5
     n(6) = g(1, 2) * 1000 + g(2, 2) * 100 + g(3, 2) * 10 + g(4, 2): p(6) = 6
     n(7) = g(1, 3) * 1000 + g(2, 3) * 100 + g(3, 3) * 10 + g(4, 3): p(7) = 7
     n(8) = g(1, 4) * 1000 + g(2, 4) * 100 + g(3, 4) * 10 + g(4, 4): p(8) = 8
     n1 = n(1): n2 = n(2): n3 = n(3): n4 = n(4)
     DO
      done = 1
      FOR k = 1 TO 7
        IF n(k) > n(k + 1) THEN SWAP n(k), n(k + 1): SWAP p(k), p(k + 1): done = 0
      NEXT
     LOOP UNTIL done
     good = 1
     FOR k = 1 TO 7
      IF n(k) = n(k + 1) THEN good = 0: EXIT FOR
     NEXT
     IF good THEN
       s$ = ""
       FOR k = 1 TO 8
         s$ = s$ + LTRIM$(STR$(p(k)))
       NEXT
       IF s$ = "42581763" THEN
         PRINT "A"
         PRINT n1: PRINT n2: PRINT n3: PRINT n4
         PRINT
         cta = cta + 1
       END IF
       IF s$ = "16548327" THEN
         PRINT "B"
         PRINT n1: PRINT n2: PRINT n3: PRINT n4
         PRINT
         ctb = ctb + 1
       END IF
       IF s$ = "15367824" THEN
         PRINT "C"
         PRINT n1: PRINT n2: PRINT n3: PRINT n4
         PRINT
         ctc = ctc + 1
       END IF
     END IF
   ELSE
     col = c + 1
     row = r
     IF col > 4 THEN col = 1: row = row + 1
     choose row, col
   END IF
 NEXT i
END SUB

 


  Posted by Charlie on 2008-12-03 18:20:24
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information