All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math > Calculus
Edgy Integral (Posted on 2009-03-25) Difficulty: 2 of 5
Solve this alphametic integral puzzle, where each of the capital letters in bold represents a different decimal digit from 0 to 9, given that C and N are constants and, E is not zero.

B
∫ C*xN dx = EDGE
A

See The Solution Submitted by K Sengupta    
Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Basic solution | Comment 2 of 4 |

A=0, B=6, C=8, N=3, EDGE = 2592

Integ{0..6} 8x^3 dx = 2592


as Integ{A..B} C*x^N dx = C * (B^(N + 1) - A^(N + 1)) / (N + 1):

FOR a = 0 TO 9
 used(a) = 1
FOR b = 0 TO 9
IF used(b) = 0 THEN
 used(b) = 1
FOR c = 0 TO 9
IF used(c) = 0 THEN
 used(c) = 1
FOR n = 0 TO 9
IF used(n) = 0 THEN
 used(n) = 1

 num = INT(c * (b ^ (n + 1) - a ^ (n + 1)) + .5)
 den = n + 1
 edge = num / den
 IF edge = INT(edge) AND edge > 1000 AND edge < 10000 THEN
   IF edge \ 1000 = edge MOD 10 THEN
    e = edge MOD 10
    d = (edge \ 100) MOD 10
    g = (edge \ 10) MOD 10
    IF used(e) = 0 AND used(d) = 0 AND used(g) = 0 THEN
      IF e <> d AND d <> g AND e <> g THEN
       PRINT a; b; c, n, edge
      END IF
    END IF
   END IF
 END IF

 used(n) = 0
END IF
NEXT
 used(c) = 0
END IF
NEXT
 used(b) = 0
END IF
NEXT
 used(a) = 0
NEXT

 


  Posted by Charlie on 2009-03-25 13:44:35
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information