All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Edgy Integral (Posted on 2009-03-25)
Solve this alphametic integral puzzle, where each of the capital letters in bold represents a different decimal digit from 0 to 9, given that C and N are constants and, E is not zero.

B
∫ C*xN dx = EDGE
A

 See The Solution Submitted by K Sengupta Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Basic solution | Comment 2 of 4 |

A=0, B=6, C=8, N=3, EDGE = 2592

Integ{0..6} 8x^3 dx = 2592

as Integ{A..B} C*x^N dx = C * (B^(N + 1) - A^(N + 1)) / (N + 1):

FOR a = 0 TO 9
used(a) = 1
FOR b = 0 TO 9
IF used(b) = 0 THEN
used(b) = 1
FOR c = 0 TO 9
IF used(c) = 0 THEN
used(c) = 1
FOR n = 0 TO 9
IF used(n) = 0 THEN
used(n) = 1

num = INT(c * (b ^ (n + 1) - a ^ (n + 1)) + .5)
den = n + 1
edge = num / den
IF edge = INT(edge) AND edge > 1000 AND edge < 10000 THEN
IF edge \ 1000 = edge MOD 10 THEN
e = edge MOD 10
d = (edge \ 100) MOD 10
g = (edge \ 10) MOD 10
IF used(e) = 0 AND used(d) = 0 AND used(g) = 0 THEN
IF e <> d AND d <> g AND e <> g THEN
PRINT a; b; c, n, edge
END IF
END IF
END IF
END IF

used(n) = 0
END IF
NEXT
used(c) = 0
END IF
NEXT
used(b) = 0
END IF
NEXT
used(a) = 0
NEXT

 Posted by Charlie on 2009-03-25 13:44:35

 Search: Search body:
Forums (0)
Random Problem
Site Statistics
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox: