All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Happy 2009 to you all (Posted on 2009-02-08) Difficulty: 3 of 5
Solve this crossnumber puzzle:

A B C D E
F G
H I J K L
M N
O P
Q R
S T U V W
X
Y Z
      

         D*V       = 2009 	    N + T + U   = 2009
         F2 – C    = 2009 	    O – L3      = 2009
         G + H     = 2009 	    P – O       = 2009
         I / X     = 2009	    3Q – A      = 2009
         J/2 – Z/3 = 2009           R2 – B      = 2009
         K – E     = 2009 	    Y2 + 2N – W = 2009
         M + S/4   = 2009
No number begins with zero.

Note: This nice and ingenious puzzle (look at the symmetry of the grid) and some similar ones are © copyrighted but his author has granted permission for its use.
His site (with many interesting puzzles) I´ll mention in the official solution.

See The Solution Submitted by pcbouhid    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 3 of 3 |

2009 is 7 * 7 * 41, so to factor into two 2-digit numbers, those two integers must be 49 and 41. The second digit of V is the first digit of X and so can't be a 9, as that would cause I to have six digits rather than 5 per I / X = 2009. So D=49 and V=41.

Similar constraints are applied within the program below:

DEFDBL A-Z
CLS

d = 49: v = 41
FOR f = 46 TO 54
 c = f * f - 2009
 FOR x = 10 TO 19
   i = 2009 * x
   FOR r = 55 TO 109
    b = r * r - 2009
    IF b MOD 10 = c \ 100 THEN
     'dvfcxirb known now
     FOR l = 20 TO 46
       o = 2009 + l * l * l
       p = o + 2009
       IF (i \ 100) MOD 10 = p \ 10000 THEN
        'dvfcxirblop known
        q = 100 * ((o \ 1000) MOD 10) + 10 * (r \ 10) + (i \ 10) MOD 10
        sBase = ((o \ 100) MOD 10) * 1000 + (r MOD 10) * 100 + (i MOD 10) * 10
        FOR tFirst = 1 TO 9
         s = sBase + tFirst
         IF s MOD 4 = 0 THEN
          m = 2009 - s / 4
          IF m >= 100 AND m <= 999 THEN
           IF ((m \ 10) MOD 10) = ((p \ 100) MOD 10) THEN
       'dvfcxirblopqsm known
            a = 3 * q - 2009
            IF a >= 100 AND a <= 999 THEN
             IF (a \ 10) MOD 10 = f \ 10 THEN
              hBase = (a MOD 10) * 1000 + (i \ 10000) * 10
              gBase = (f MOD 10) * 10
              FOR g = gBase TO gBase + 9
               h = 2009 - g
               IF h \ 10 = hBase \ 10 + 10 * (g MOD 10) AND ((h \ 10) MOD 10) = i \ 10000 THEN
       'dvfcxirblopqsmahg known; need zjnuektwy
                kFirst = 9: kMid = p MOD 10
                FOR nFirst = 2 TO 9
                FOR nLast = 0 TO 9
                  n = 100 * nFirst + 10 * (l MOD 10) + nLast
                  jBase = 1000 * (c MOD 10) + kFirst * 100 + 10 * (l \ 10)
                  FOR j = jBase TO jBase + 8 STEP 2
                   z = (j / 2 - 2009) * 3
                   IF z >= 1000 AND z <= 9999 THEN
                      eBase = 90000 + 100 * (j MOD 10) + 10 * nLast
                      FOR et = 0 TO 9000 STEP 1000
                       FOR eLow = 0 TO 9
                        e = eBase + et + eLow
                        k = e + 2009
                        IF k < 100000 AND (k \ 1000) MOD 10 = n \ 100 AND (k \ 100) MOD 10 = p MOD 10 THEN
                         tBase = 100 * (s MOD 10) + z \ 1000
                         FOR t = tBase TO tBase + 90 STEP 10
                           u = 2009 - n - t
                           IF u >= 1000 AND u <= 9999 AND (u \ 10) MOD 10 = 4 THEN
                            IF ((u \ 100) MOD 10) = k MOD 10 THEN
                             yBase = 10 * (o MOD 10)
                             FOR y = yBase TO yBase + 9
                               w = y * y + 2 * n - 2009
                               IF w \ 100 = u MOD 10 AND ((w \ 10) MOD 10) = x MOD 10 AND w >= 100 AND w <= 999 THEN
                                PRINT "a ="; a
                                PRINT "b ="; b
                                PRINT "c ="; c
                                PRINT "d ="; d
                                PRINT "e ="; e
                                PRINT "f ="; f
                                PRINT "g ="; g
                                PRINT "h ="; h
                                PRINT "i ="; i
                                PRINT "j ="; j
                                PRINT "k ="; k
                                PRINT "l ="; l
                                PRINT "m ="; m
                                PRINT "n ="; n
                                PRINT "o ="; o
                                PRINT "p ="; p
                                PRINT "q ="; q
                                PRINT "r ="; r
                                PRINT "s ="; s
                                PRINT "t ="; t
                                PRINT "u ="; u
                                PRINT "v ="; v
                                PRINT "w ="; w
                                PRINT "x ="; x
                                PRINT "y ="; y
                                PRINT "z ="; z
                                ct = ct + 1
                               END IF
                             NEXT y
                            END IF
                           END IF
                         NEXT t
                        END IF
                       NEXT eLow
                      NEXT et
                   END IF
                  NEXT j
                NEXT
                NEXT
               END IF
              NEXT
             END IF
            END IF
           END IF
          END IF
         END IF
        NEXT
       END IF
     NEXT l
    END IF
   NEXT
 NEXT x
NEXT f
PRINT ct

The result is:

a = 241
b = 1472
c = 295
d = 49
e = 91293
f = 48
g = 89
h = 1920
i = 24108
j = 5922
k = 93302
l = 25
m = 263
n = 359
o = 17634
p = 19643
q = 750
r = 59
s = 6984
t = 402
u = 1248
v = 41
w = 825
x = 12
y = 46
z =
2856

  Posted by Charlie on 2009-02-09 01:27:53
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information