All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Newsless Alphametics (Posted on 2009-04-15)
x, y and z (in this order), with x < y < z, are three positive integers in arithmetic sequence that satisfy this set of alphametic equations.

y4 - x4 = NEWS, and

z4 - y4 = LESS.

where, each of the capital letters in bold represents a different decimal (base 10) digit from 0 to 9.

Determine all possible value(s) of the triplet (x, y, z).

What are the possible four digit number(s) that represent WELL?

Note: Neither L nor N is zero.

 No Solution Yet Submitted by K Sengupta No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution | Comment 3 of 5 |

The following program determines that z can be no larger than 14, as, if it were, then even only a 1 unit difference with y would make z^4-y^4 be longer than 4 digits:

`list   10   for Z=10 to 10000   20   Diff=Z^4-(Z-1)^4   25   print Z,Diff   30   if Diff>9999 then print Z:end   40   nextOKrun 10      3439 11      4641 12      6095 13      7825 14      9855 15      12209 15No for(next)`

That leads to the following program and its run:

`list   10   for X=1 to 12   20   for Y=X+1 to 13   30   for Z=Y+1 to 14   40      News=cutspc(str(Y^4-X^4))   50      Less=cutspc(str(Z^4-Y^4))   60      Good=1   70      if len(News)<>4 or len(Less)<>4 then Good=0   80      if Good then   90        :for I=1 to 3  100         :if instr(I+1,News,mid(News,I,1))>0 then Good=0:endif  110        :next  120        :if mid(Less,3,1)<>mid(Less,4,1) then Good=0:endif  130        :if mid(Less,3,1)<>mid(News,4,1) then Good=0:endif  140        :if mid(Less,2,1)<>mid(News,2,1) then Good=0:endif  150        :if instr(2,Less,mid(Less,1,1))>0 then Good=0:endif  160        :if instr(News,mid(Less,1,1))>0 then Good=0:endif  170        :if Good then print X;Y;Z,News;" ";Less  180   next  190   next  200   nextOKrun 12  13  14     7825 9855OK`

So (x,y,z) can only be (12,13,14). WELL is 2899.

The program did not check for the integers x, y and z to be in arithmetic sequence, but the only set that fit the other criteria were in fact in arithmetic sequence.

In fact, even if we allowed x, y and z to be any digits between 0 and 14 without regard to which is largest or smallest, there are no further solutions.

 Posted by Charlie on 2009-04-15 13:48:49

 Search: Search body:
Forums (45)