All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Pennies, Dimes, and Quarters (Posted on 2009-02-17)
In my left pocket I have a mix of pennies (1 cent) and quarters (25 cents). In my right pocket I have a bunch of dimes (10 cents). The number of coins in each pocket is the same, so is the cash value. What is the smallest (nonzero) number of coins I can have?

What if I had coins of x cents and z cents in my left pocket and coins of y cents in my right pocket - is there some quantitiy of coins I can have so that each pocket has the same number of coins and same cash value? (The value of the coins are positive integers x > y > z.)

 See The Solution Submitted by Brian Smith Rating: 2.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 the rest | Comment 5 of 10 |

Assume I had   A coins of x cents and   B    of  z cents in my left pocket and      A+B coins of y cents in my right pocket - then

Ax+Bz=(A+B)Y

A(x-y)=B(y-z)

Clearly  A=y-z    and  B=  x-y ARE VALID POSITIVE SOLUTIONS

 Posted by Ady TZIDON on 2009-02-17 13:02:49

 Search: Search body:
Forums (0)