All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 ten*ten – ten = ninety (Posted on 2009-10-25)
In this alphametic equation, each of the small letters in bold denotes a different base b digit from 0 to b-1. Neither t nor n can be zero.

(ten)*(ten) - ten = ninety

Determine the minimum value of b, for which there exists at least one solution to the above equation.

 No Solution Yet Submitted by K Sengupta Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Next larger solution Comment 5 of 5 |

The next base with a solution is base 66.  T=60, E=51, N=55, I=64 and Y=0.  In base 10, TEN=264781 and NINETY=70108713180.

I used the following in UBASIC, and weeded out a few bad solutions as I did not put in vigorous checking.

`   10   B_min=5   11   B_max=11   12   for B=B_min to B_max   20   for T=ceil(sqrt(B)) to B-1   30   N_min=floor(T*T/B)   31   for N=N_min to N_min+2   32   if N=B then 97   33   if N=T then 97   39   ' print B,T,N   40   for E=0 to B-1   41   if E=N then 96   42   if E=T then 96   50   Ten=B*(B*T+E)+N   51   Noneto=B*(B*(B*(B*B+1)*N+E)+T)   52   Ioooy=Ten*(Ten-1)-Noneto   55   Y=Ioooy@B   56   I=floor(Ioooy/(B*B*B*B))   60   Zero=Ioooy-Y-I*B*B*B*B   70   if Zero=0 then print B,N;E;T;I;Y,Ten;Noneto+Ioooy   96   next E   97   next N   98   next T   99   next B`

 Posted by Brian Smith on 2009-10-30 22:59:24

 Search: Search body:
Forums (0)