All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 A Normal and a Parabola (Posted on 2009-12-02)
Choose any point (k,k^2) with k>0 on the parabola y=x^2. Draw the normal line to the parabola at that point. Then there is a closed region defined by the parabola and the line. Find the value of k so the area of the region is minimized.

Note: A normal line is a line perpendicular to a tangent at the point of tangency.

 Submitted by Brian Smith No Rating Solution: (Hide) k=1/2, area=4/3 The slope of the tangent at (k,k^2) is 2k, so the slope of the normal is -1/(2k). Then the equation of the normal is y = -x/(2k) + k^2 + 1/2. The second point the normal intersects y=x^2 is ( -k + -1/(2k), k^2 + 1 + 1/(4k^2) ). The area of the closed region is equal to the integral of the difference of the equations of the normal and parabola from x=-k-1/(2k) to k. =Integ{-k-1/(2k), k} [(-x/(2k) + k^2 + 1/2) - x^2] dx The easiest way to evaluate this integral is to use Simpson's rule which is exact for parabolas. To do that one more point is needed at x=[(k)+(-k-1/(2k))]/2 = -1/(4k) The three points to be used are: (k, 0) (-1/(4k), k^2 + 1/2 + 1/(16k^2) (-k-1/(2k), 0) Then the integral evaluates to Area = ( 2k+1/(2k) )/6 * [1*0 + 4*(k^2 + 1/2 + 1/(16k^2)) + 1*0] This simplifies to Area = 1/6 * [2k+1/(2k)]^3 2k+1/(2k) and its cube are at a minimum when k=1/2 (remember k>0). Then the area is 1/6 * 2^3 = 4/3

Comments: ( You must be logged in to post comments.)
 Subject Author Date re(2): solution error found Daniel 2009-12-02 22:08:16 re: solution error found Ady TZIDON 2009-12-02 14:43:34 re: solution Charlie 2009-12-02 12:43:05 solution Daniel 2009-12-02 12:13:35

 Search: Search body:
Forums (0)