All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
50 - Digit Number II (Posted on 2010-05-29) Difficulty: 2 of 5
N is a duodecimal (base 12) positive integer having precisely 50 digits such that each of its digits is equal to 1 except the 26th digit. If N is divisible by the duodecimal number 17, then find the digit in the 26th place.

No Solution Yet Submitted by K Sengupta    
Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Hints/Tips re: analytical solution..... bRAVO not dELTA | Comment 2 of 9 |
(In reply to analytical solution by Daniel)

Why D?

Duodecimal digits are : 1,2,3,...9.,A,B.

BTW, I BELIEVE 11, i.e. B IS  THE CORRECT SOLUTION-

but there is no need to solve  it explicitly - see my solution.


  Posted by Ady TZIDON on 2010-05-29 15:23:43
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (7)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information