All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Minimal area. (Posted on 2010-03-29)
Take some point V and draw two rays from it. Choose some other point W in between those two rays. Then, construct a line that touches both rays and passes through W.

Now, this line forms a closed triangle together with the two rays. The point W divides this line into two segments (x1, x2). What is the ratio of these two segments such that the area of the enclosed triangle is minimal?

Does this minimal area even exist?

 See The Solution Submitted by Vee-Liem Veefessional Rating: 4.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Solution Comment 11 of 11 |
`Let the intersections of the line withthe rays be X and Y such that`
`    x = |WX|    y = |WY|`
`Let w = |WV| and`
`    a = angle WVX    b = angle WVY    t = angle VWX`
`WOLOG assume a >= b. Then`
`         w*sin(a)    x = ----------                      (1)              sin(t+a)`
`         w*sin(b)    y = ----------                      (2)         sin(t-b)`
`    A = Area = (1/2)*w*x*sin(t)               + (1/2)*w*y*sin(180-t)`
`             = (1/2)*w*(x+y)*sin(t)     (3)`
`Differentiating (1)-(3),`
`    dx     -w*sin(a)*cos(t+a)   ---- = --------------------         (1')    dt         sin(t+a)^2`
`    dy     -w*sin(b)*cos(t-b)   ---- = --------------------         (2')    dt         sin(t-b)^2`
`        dA   0 = ---- = (1/2)*w*[(x+y)*cos(t)        dt        dx     dy              + (---- + ----)*sin(t)]  (3')                  dt     dt`
`Combining (1),(2), and (1')-(3') we get`
`   x = y`
`Using this and (1) and (2) we get`
`   t = 90                       if a = b`
`   tan(t) = 2*tan(b)            if a = 90`
`             2*tan(a)*tan(b)   tan(t) = -----------------   if a <> 90              tan(a)-tan(b)`
`The line XY is therefore contructible withstraightedge and compass.`
` `

Edited on April 24, 2010, 6:13 pm
 Posted by Bractals on 2010-03-30 23:17:18

 Search: Search body:
Forums (0)