All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Oodles of Factors II (Posted on 2010-10-11) Difficulty: 3 of 5
A. What is the lowest base 12 positive integer that has exactly 10 (base 12) distinct positive factors?

B. Exactly 1,000 (base 12) distinct positive factors?

C. Exactly 1,000,000 (base 12) distinct positive factors?

For example, the distinct positive factors of 40 (base 12) are the base 12 numbers 1, 2, 3, 4, 6, 8, 10, 14, 20, and 40. Accordingly, 40 (base 12) has precisely A (base 12) distinct positive factors.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re(2): Part C Comment 7 of 7 |
(In reply to re: Part C by Charlie)

thank you for pointing out my mistake, I double checked my calculation and you are correct that I left out 43 and 47 in the factorization.  Adding those two causes 9*6*3^3*2^11 = 12^6.  I am relieved that it was not a problem with the code itself.


  Posted by Daniel on 2010-10-12 11:58:25
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information