All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Greatest Root Power (Posted on 2011-01-12) Difficulty: 3 of 5
Determine all possible pair(s) (M, N) of positive integers such that:

N[√N] = MM-1

Prove that these are the only possible pair(s) that exist.

Note: [x] denotes the greatest integer ≤ x.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts computer exploration--no proof (spoiler) Comment 1 of 1
10 for t=1 to 1000000
20      for n=1 to t-1
30        m=t-n
40        lhs=n^int(sqrt(n)):rhs=m^(m-1)
50        if lhs=rhs then ?n,m,lhs
60      next n
70 next t
 n       m     lhs (=rhs)
 1       1       1
 2       2       2
 8       4       64
Overflow in 40
?t
 888
OK

shows that for n+m < 888 there are only the three solutions:

(1,1)
(2,2)
(4,8)

A more sensibly written program (one that allows higher values) verifies no more solutions up to n = 48888, the point at which it was stopped:


10 for n=1 to 999999
20    v=n^int(sqrt(n))
30    v2=0:m=0
40    while v2<v
50       m=m+1:v2=m^(m-1)
60    wend
70    if v2=v then ?m,n,v
80 next
run
 m       n      value
 1       1       1
 2       2       2
 4       8       64
Break in 50
?n
 34644
OK
cont
Break in 50
?n
 48888
OK

 


  Posted by Charlie on 2011-01-12 13:09:55
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information